IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v33y2017i4p422-442.html
   My bibliography  Save this article

Unifying pricing formula for several stochastic volatility models with jumps

Author

Listed:
  • Falko Baustian
  • Milan Mrázek
  • Jan Pospíšil
  • Tomáš Sobotka

Abstract

In this paper, we introduce a unifying approach to option pricing under continuous‐time stochastic volatility models with jumps. For European style options, a new semi‐closed pricing formula is derived using the generalized complex Fourier transform of the corresponding partial integro‐differential equation. This approach is successfully applied to models with different volatility diffusion and jump processes. We also discuss how to price options with different payoff functions in a similar way. In particular, we focus on a log‐normal and a log‐uniform jump diffusion stochastic volatility model, originally introduced by Bates and Yan and Hanson, respectively. The comparison of existing and newly proposed option pricing formulas with respect to time efficiency and precision is discussed. We also derive a representation of an option price under a new approximative fractional jump diffusion model that differs from the aforementioned models, especially for the out‐of‐the money contracts. Copyright © 2017 John Wiley & Sons, Ltd.

Suggested Citation

  • Falko Baustian & Milan Mrázek & Jan Pospíšil & Tomáš Sobotka, 2017. "Unifying pricing formula for several stochastic volatility models with jumps," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 422-442, August.
  • Handle: RePEc:wly:apsmbi:v:33:y:2017:i:4:p:422-442
    DOI: 10.1002/asmb.2248
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2248
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    2. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    3. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    4. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    5. Youssef El-Khatib & Zororo S. Makumbe & Josep Vives, 2024. "Approximate option pricing under a two-factor Heston–Kou stochastic volatility model," Computational Management Science, Springer, vol. 21(1), pages 1-28, June.
    6. Jan Posp'iv{s}il & Vladim'ir v{S}v'igler, 2019. "Isogeometric analysis in option pricing," Papers 1910.00258, arXiv.org.
    7. Jan Posp'iv{s}il & Tom'av{s} Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Papers 1912.06709, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:4:p:422-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.