IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v33y2017i3p260-268.html
   My bibliography  Save this article

Bayesian optimal experimental designs for binary responses in an adaptive framework

Author

Listed:
  • Alessandra Giovagnoli

Abstract

Bayesian designs make formal use of the experimenter's prior information in planning scientific experiments. In their 1989 paper, Chaloner and Larntz suggested to choose the design that maximizes the prior expectation of a suitable utility function of the Fisher information matrix, which is particularly useful when Fisher's information depends on the unknown parameters of the model. In this paper, their method is applied to a randomized experiment for a binary response model with two treatments, in an adaptive way, that is, updating the prior information at each step on the basis of the accrued data. The utility is the A‐optimality criterion and the marginal priors for the parameters of interest are assumed to be beta distributions. This design is shown to converge almost surely to the Neyman allocation. But frequently, experiments are designed with more purposes in mind than just inferential ones. In clinical trials for treatment comparison, Bayesian statisticians share with non‐Bayesians the goal of randomizing patients to treatment arms so as to assign more patients to the treatment that does better in the trial. One possible approach is to optimize the prior expectation of a combination of the different utilities. This idea is applied in the second part of the paper to the same binary model, under a very general joint prior, combining either A‐ or D‐optimality with an ethical criterion. The resulting randomized experiment is skewed in favor of the more promising treatment and can be described as Bayes compound optimal. Copyright © 2016 John Wiley & Sons, Ltd.

Suggested Citation

  • Alessandra Giovagnoli, 2017. "Bayesian optimal experimental designs for binary responses in an adaptive framework," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(3), pages 260-268, May.
  • Handle: RePEc:wly:apsmbi:v:33:y:2017:i:3:p:260-268
    DOI: 10.1002/asmb.2207
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2207
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:3:p:260-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.