IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v33y2017i2p213-236.html
   My bibliography  Save this article

Bayesian tail‐risk forecasting using realized GARCH

Author

Listed:
  • Christian Contino
  • Richard H. Gerlach

Abstract

A realized generalized autoregressive conditional heteroskedastic (GARCH) model is developed within a Bayesian framework for the purpose of forecasting value at risk and conditional value at risk. Student‐t and skewed‐t return distributions are combined with Gaussian and student‐t distributions in the measurement equation to forecast tail risk in eight international equity index markets over a 4‐year period. Three realized measures are considered within this framework. A Bayesian estimator is developed that compares favourably, in simulations, with maximum likelihood, both in estimation and forecasting. The realized GARCH models show a marked improvement compared with ordinary GARCH for both value‐at‐risk and conditional value‐at‐risk forecasting. This improvement is consistent across a variety of data and choice of distributions. Realized GARCH models incorporating a skewed student‐t distribution for returns are favoured overall, with the choice of measurement equation error distribution and realized measure being of lesser importance. Copyright © 2017 John Wiley & Sons, Ltd.

Suggested Citation

  • Christian Contino & Richard H. Gerlach, 2017. "Bayesian tail‐risk forecasting using realized GARCH," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(2), pages 213-236, March.
  • Handle: RePEc:wly:apsmbi:v:33:y:2017:i:2:p:213-236
    DOI: 10.1002/asmb.2237
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2237
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    2. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Econometrics, MDPI, vol. 11(3), pages 1-36, August.
    3. Xing, Dun-Zhong & Li, Hai-Feng & Li, Jiang-Cheng & Long, Chao, 2021. "Forecasting price of financial market crash via a new nonlinear potential GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Xie, Haibin & Yu, Chengtan, 2020. "Realized GARCH models: Simpler is better," Finance Research Letters, Elsevier, vol. 33(C).
    5. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:2:p:213-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.