Author
Listed:
- Andrey Pepelyshev
- Evgenii Sovetkin
- Ansgar Steland
Abstract
We study a stratified multisite cluster‐sampling panel time series approach in order to analyse and evaluate the quality and reliability of produced items, motivated by the problem to sample and analyse multisite outdoor measurements from photovoltaic systems. The specific stratified sampling in spatial clusters reduces sampling costs and allows for heterogeneity as well as for the analysis of spatial correlations due to defects and damages that tend to occur in clusters. The analysis is based on weighted least squares using data‐dependent weights. We show that this does not affect consistency and asymptotic normality of the least squares estimator under the proposed sampling design under general conditions. The estimation of the relevant variance–covariance matrices is discussed in detail for various models including nested designs and random effects. The strata corresponding to damages or manufacturers are modelled via a quality feature by means of a threshold approach. The analysis of outdoor electroluminescence images shows that spatial correlations and local clusters may arise in such photovoltaic data. Further, relevant statistics such as the mean pixel intensity cannot be assumed to follow a Gaussian law. We investigate the proposed inferential tools in detail by simulations in order to assess the influence of spatial cluster correlations and serial correlations on the test's size and power. ©2016 The Authors. Applied Stochastic Models in Business and Industry published by John Wiley & Sons, Ltd.
Suggested Citation
Andrey Pepelyshev & Evgenii Sovetkin & Ansgar Steland, 2017.
"Panel‐based stratified cluster sampling and analysis for photovoltaic outdoor measurements,"
Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 35-53, January.
Handle:
RePEc:wly:apsmbi:v:33:y:2017:i:1:p:35-53
DOI: 10.1002/asmb.2217
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:1:p:35-53. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.