IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v31y2015i5p584-608.html
   My bibliography  Save this article

Analyzing return asymmetry and quantiles through stochastic volatility models using asymmetric Laplace error via uniform scale mixtures

Author

Listed:
  • Nuttanan Wichitaksorn
  • Joanna J. J. Wang
  • S. T. Boris Choy
  • Richard Gerlach

Abstract

This paper proposes a new approach to analyze stock return asymmetry and quantiles. We also present a new scale mixture of uniform (SMU) representation for the asymmetric Laplace distribution (ALD). The use of the SMU for a probability distribution is a data augmentation technique that simplifies the Gibbs sampler of the Bayesian Markov chain Monte Carlo algorithms. We consider a stochastic volatility (SV) model with an ALD error distribution. With the SMU representation, the full conditional distribution for some parameters is shown to have closed form. It is also known that the ALD can be used to obtain the coefficients of quantile regression models. This paper also considers a quantile SV model by fixing the skew parameter of the ALD at specific quantile level. Simulation study shows that the proposed methodology works well in both SV and quantile SV models using Bayesian approach. In the empirical study, we analyze index returns of the stock markets in Australia, Japan, Hong Kong, Thailand, and the UK and study the effect of S&P 500 on these returns. The results show the significant return asymmetry in some markets and the influence by S&P 500 in all markets at all quantile levels. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Nuttanan Wichitaksorn & Joanna J. J. Wang & S. T. Boris Choy & Richard Gerlach, 2015. "Analyzing return asymmetry and quantiles through stochastic volatility models using asymmetric Laplace error via uniform scale mixtures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(5), pages 584-608, September.
  • Handle: RePEc:wly:apsmbi:v:31:y:2015:i:5:p:584-608
    DOI: 10.1002/asmb.2062
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2062
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    2. Francisco J. Rubio & Keming Yu, 2017. "Flexible objective Bayesian linear regression with applications in survival analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 798-810, April.
    3. Shiyi Tu & Min Wang & Xiaoqian Sun, 2017. "Bayesian variable selection and estimation in maximum entropy quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 253-269, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:31:y:2015:i:5:p:584-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.