IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v31y2015i4p464-482.html
   My bibliography  Save this article

Estimation of nonstrict Archimedean copulas and its application to quantum networks

Author

Listed:
  • Sandra König
  • Hannes Kazianka
  • Jürgen Pilz
  • Johannes Temme

Abstract

Bivariate nonstrict Archimedean copulas form a subclass of Archimedean copulas and are able to model the dependence structure of random variables that do not take on low quantiles simultaneously; i.e. their domain includes a set, the so‐called zero set, with positive Lebesgue measure but zero probability mass. Standard methods to fit a parametric Archimedean copula, e.g. classical maximum likelihood estimation, are either getting computationally more involved or even fail when dealing with this subclass. We propose an alternative method for estimating the parameter of a nonstrict Archimedean copula that is based on the zero set and the functional form of its boundary curve. This estimator is fast to compute and can be applied to absolutely continuous copulas but also allows singular components. In a simulation study, we compare its performance to that of the standard estimators. Finally, the estimator is applied when modeling the dependence structure of quantities describing the quality of transmission in a quantum network, and it is shown how this model can be used effectively to detect potential intruders in this network. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Sandra König & Hannes Kazianka & Jürgen Pilz & Johannes Temme, 2015. "Estimation of nonstrict Archimedean copulas and its application to quantum networks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 464-482, July.
  • Handle: RePEc:wly:apsmbi:v:31:y:2015:i:4:p:464-482
    DOI: 10.1002/asmb.2039
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2039
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    2. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:31:y:2015:i:4:p:464-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.