IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v31y2015i4p424-434.html
   My bibliography  Save this article

Optimal adaptive replacement in a renewal process

Author

Listed:
  • Neville Robinson
  • Khalid Aboura

Abstract

In this paper we present an exact method for computing the Weibull renewal function and its derivative for application in maintenance optimization. The computational method provides a solid extension to previous work by which an approximation to the renewal function was used in a Bayesian approach to determine optimal replacement times. In the maintenance scenario, under the assumption an item is replaced by a new one upon failure, the underlying process between planned replacement times is a renewal process. The Bayesian approach takes into account failure and survival information at each planned replacement stage to update the optimal time until the next planned replacement. To provide a simple approach to carry out in practice, we limit the decision process to a one‐step optimization problem in the sequential decision problem. We make the Weibull assumption for the lifetime distribution of an item and calculate accurately the renewal function and its derivative. A method for finding zeros of a function is adapted to the maintenance optimization problem, making use of the availability of the derivative of the renewal function. Furthermore, we develop the maximum likelihood estimate version of the Bayesian approach and illustrate it with simulated examples. The maintenance algorithm retains the adaptive concept of the Bayesian methodology but reduces the computational need. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Neville Robinson & Khalid Aboura, 2015. "Optimal adaptive replacement in a renewal process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 424-434, July.
  • Handle: RePEc:wly:apsmbi:v:31:y:2015:i:4:p:424-434
    DOI: 10.1002/asmb.2035
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2035
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:31:y:2015:i:4:p:424-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.