IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v31y2015i2p122-136.html
   My bibliography  Save this article

System unavailability analysis based on window‐observed recurrent event data

Author

Listed:
  • Yili Hong
  • Ming Li
  • Brock Osborn

Abstract

Many service industries require high level of system availability to be competitive. An appropriate system unavailability metric is important for business decisions and to minimize the operation risks. In practice, a system can be unavailable for service because of multiple types of events, and the durations of these events can also vary. In addition, the data that record the system operating history often have a complicated structure. In this paper, we develop a framework for estimating system unavailability metric based on historical data of a fleet of heavy‐duty industry equipment, which we call System A. During the useful life of System A, repairs and maintenance actions are performed. However, not all repairs or maintenance actions were recorded. Specifically, the information on event times, types, and durations is available only for certain time intervals (i.e., observation windows), instead of the entire useful life span of the system. Thus, the data structure is window‐observed recurrent event with multiple event types. We use a nonhomogeneous Poisson process model with a bathtub intensity function to describe the recurrent events, and a truncated lognormal distribution to describe the event durations. We then define a conservative metric for system unavailability, obtain an estimate of this metric, and quantify the statistical uncertainty. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Yili Hong & Ming Li & Brock Osborn, 2015. "System unavailability analysis based on window‐observed recurrent event data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(2), pages 122-136, March.
  • Handle: RePEc:wly:apsmbi:v:31:y:2015:i:2:p:122-136
    DOI: 10.1002/asmb.1984
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.1984
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.1984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badía, Francisco German & Sangüesa, Carmen & Cha, Ji Hwan, 2018. "Stochastic comparisons and multivariate dependence for the epoch times of trend renewal processes," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 174-184.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:31:y:2015:i:2:p:122-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.