IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v30y2014i5p544-572.html
   My bibliography  Save this article

Goal achieving probabilities of cone‐constrained mean‐variance portfolios

Author

Listed:
  • Chantal Labbé
  • François Watier

Abstract

In this paper, we establish closed‐form formulas for key probabilistic properties of the cone‐constrained optimal mean‐variance strategy, in a continuous market model driven by a multidimensional Brownian motion and deterministic coefficients. In particular, we compute the probability to obtain to a point, during the investment horizon, where the accumulated wealth is large enough to be fully reinvested in the money market, and safely grow there to meet the investor's financial goal at terminal time. We conclude that the result of Li and Zhou [Ann. Appl. Prob., v.16, pp.1751–1763, (2006)] in the unconstrained case carries over when conic constraints are present: the former probability is lower bounded by 80% no matter the market coefficients, trading constraints, and investment goal. We also compute the expected terminal wealth given that the investor's goal is underachieved, for both the mean‐variance strategy and the aforementioned hybrid strategy where transfer to the money market occurs if it allows to safely achieve the goal. The former probabilities and expectations are also provided in the case where all risky assets held are liquidated if financial distress is encountered. These results provide investors with novel practical tools to support portfolio decision‐making and analysis. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Chantal Labbé & François Watier, 2014. "Goal achieving probabilities of cone‐constrained mean‐variance portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(5), pages 544-572, September.
  • Handle: RePEc:wly:apsmbi:v:30:y:2014:i:5:p:544-572
    DOI: 10.1002/asmb.2002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2002
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:30:y:2014:i:5:p:544-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.