IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v29y2013i6p579-598.html
   My bibliography  Save this article

Multivariate dynamic regression: modeling and forecasting for intraday electricity load

Author

Listed:
  • Helio S. Migon
  • Larissa C. Alves

Abstract

This paper introduces electricity load curve models for short‐term forecasting purposes. A broad class of multivariate dynamic regression models is proposed to model hourly electricity load. Alternative forecasting models, special cases of our general model, include separate time series regressions for each hour and week day. All the models developed include components that represent trends, seasons at different levels (yearly, weekly, etc.), dummies to take into account weekends/holidays and other special days, and short‐term dynamics and weather regression effects, discussing the necessity of nonlinx ear functions for cooling effects. Our developments explore the facilities of dynamic linear models such as the use of discount factors, subjective intervention, variance learning and smoothing/filtering. The elicitation of the load curve is considered in the context of subjective intervention analysis, which is especially useful to take into account the adjustments for daylight savings time. The theme of combination of probabilistic forecasting is also briefly addressed. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Helio S. Migon & Larissa C. Alves, 2013. "Multivariate dynamic regression: modeling and forecasting for intraday electricity load," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(6), pages 579-598, November.
  • Handle: RePEc:wly:apsmbi:v:29:y:2013:i:6:p:579-598
    DOI: 10.1002/asmb.1990
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.1990
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.1990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
    2. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:29:y:2013:i:6:p:579-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.