IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v29y2013i5p410-423.html
   My bibliography  Save this article

A semiparametric Bayesian generalized linear mixed model for the reliability of Kevlar fibers

Author

Listed:
  • Raffaele Argiento
  • Alessandra Guglielmi
  • Jacopo Soriano

Abstract

We analyze the reliability of NASA composite pressure vessels by using a new Bayesian semiparametric model. The data set consists of lifetimes of pressure vessels, wrapped with a Kevlar fiber, grouped by spool, subject to different stress levels; 10% of the data are right censored. The model that we consider is a regression on the log‐scale for the lifetimes, with fixed (stress) and random (spool) effects. The prior of the spool parameters is nonparametric, namely they are a sample from a normalized generalized gamma process, which encompasses the well‐known Dirichlet process. The nonparametric prior is assumed to robustify inferences to misspecification of the parametric prior. Here, this choice of likelihood and prior yields a new Bayesian model in reliability analysis. Via a Bayesian hierarchical approach, it is easy to analyze the reliability of the Kevlar fiber by predicting quantiles of the failure time when a new spool is selected at random from the population of spools. Moreover, for comparative purposes, we review the most interesting frequentist and Bayesian models analyzing this data set. Our credibility intervals of the quantiles of interest for a new random spool are narrower than those derived by previous Bayesian parametric literature, although the predictive goodness‐of‐fit performances are similar. Finally, as an original feature of our model, by means of the discreteness of the random‐effects distribution, we are able to cluster the spools into three different groups. Copyright © 2012 John Wiley & Sons, Ltd.

Suggested Citation

  • Raffaele Argiento & Alessandra Guglielmi & Jacopo Soriano, 2013. "A semiparametric Bayesian generalized linear mixed model for the reliability of Kevlar fibers," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(5), pages 410-423, September.
  • Handle: RePEc:wly:apsmbi:v:29:y:2013:i:5:p:410-423
    DOI: 10.1002/asmb.1936
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.1936
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.1936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:29:y:2013:i:5:p:410-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.