Author
Listed:
- Hao Cheng
- Bastiaan Geelhoed
- Peter Bode
Abstract
During the sampling of particulate mixtures, samples taken are analyzed for their mass concentration, which generally has non‐zero sample‐to‐sample variance. Bias, variance, and mean squared error (MSE) of a number of variance estimators, derived by Geelhoed, were studied in this article. The Monte Carlo simulation was applied using an observable first‐order Markov Chain with transition probabilities that served as a model for the sample drawing process. Because the bias and variance of a variance estimator could depend on the specific circumstances under which it is applied, Monte Carlo simulation was performed for a wide range of practically relevant scenarios. Using the ‘smallest mean squared error’ as a criterion, an adaptation of an estimator based on a first‐order Taylor linearization of the sample concentration is the best. An estimator based on the Horvitz–Thompson estimator is not practically applicable because of the potentially high MSE for the cases studied. The results indicate that the Poisson estimator leads to a biased estimator for the variance of fundamental sampling error (up to 428% absolute value of relative bias) in case of low levels of grouping and segregation. The uncertainty of the results obtained by the simulations was also addressed and it was found that the results were not significantly affected. The potentials of a recently described other approach are discussed for extending the first‐order Markov Chain described here to account also for higher levels of grouping and segregation. Copyright © 2013 John Wiley & Sons, Ltd.
Suggested Citation
Hao Cheng & Bastiaan Geelhoed & Peter Bode, 2013.
"A Markov Chain Monte Carlo comparison of variance estimators for the sampling of particulate mixtures,"
Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(3), pages 187-198, May.
Handle:
RePEc:wly:apsmbi:v:29:y:2013:i:3:p:187-198
DOI: 10.1002/asmb.878
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:29:y:2013:i:3:p:187-198. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.