IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v28y2012i6p585-597.html
   My bibliography  Save this article

Optimal reinsurance–investment problem in a constant elasticity of variance stock market for jump‐diffusion risk model

Author

Listed:
  • Zhibin Liang
  • Kam Chuen Yuen
  • Ka Chun Cheung

Abstract

In this paper, we consider the jump‐diffusion risk model with proportional reinsurance and stock price process following the constant elasticity of variance model. Compared with the geometric Brownian motion model, the advantage of the constant elasticity of variance model is that the volatility has correlation with the risky asset price, and thus, it can explain the empirical bias exhibited by the Black and Scholes model, such as volatility smile. Here, we study the optimal investment–reinsurance problem of maximizing the expected exponential utility of terminal wealth. By using techniques of stochastic control theory, we are able to derive the explicit expressions for the optimal strategy and value function. Numerical examples are presented to show the impact of model parameters on the optimal strategies. Copyright © 2011 John Wiley & Sons, Ltd.

Suggested Citation

  • Zhibin Liang & Kam Chuen Yuen & Ka Chun Cheung, 2012. "Optimal reinsurance–investment problem in a constant elasticity of variance stock market for jump‐diffusion risk model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(6), pages 585-597, November.
  • Handle: RePEc:wly:apsmbi:v:28:y:2012:i:6:p:585-597
    DOI: 10.1002/asmb.934
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.934
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Hui & Shen, Yang & Zeng, Yan & Zhang, Wenjun, 2019. "Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean–variance insurer with ambiguity aversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 159-180.
    2. Zhang, Nan & Jin, Zhuo & Qian, Linyi & Fan, Kun, 2019. "Stochastic differential reinsurance games with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 7-18.
    3. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    4. Guan, Guohui & Liang, Zongxia & Feng, Jian, 2018. "Time-consistent proportional reinsurance and investment strategies under ambiguous environment," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 122-133.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:28:y:2012:i:6:p:585-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.