IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v28y2012i6p506-528.html
   My bibliography  Save this article

Optimal investment and reinsurance policies in insurance markets under the effect of inside information

Author

Listed:
  • I.D. Baltas
  • N.E. Frangos
  • A.N. Yannacopoulos

Abstract

In this paper, we study the problem of optimal investment and proportional reinsurance coverage in the presence of inside information. To be more precise, we consider two firms: an insurer and a reinsurer who are both allowed to invest their surplus in a Black–Scholes‐type financial market. The insurer faces a claims process that is modeled by a Brownian motion with drift and has the possibility to reduce the risk involved with this process by purchasing proportional reinsurance coverage. Moreover, the insurer has some extra information at her disposal concerning the future realizations of her claims process, available from the beginning of the trading interval and hidden from the reinsurer, thus introducing in this way inside information aspects to our model. The optimal investment and proportional reinsurance decision for both firms is determined by the solution of suitable expected utility maximization problems, taking into account explicitly their different information sets. The solution of these problems also determines the reinsurance premia via a partial equilibrium approach. Copyright © 2011 John Wiley & Sons, Ltd.

Suggested Citation

  • I.D. Baltas & N.E. Frangos & A.N. Yannacopoulos, 2012. "Optimal investment and reinsurance policies in insurance markets under the effect of inside information," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(6), pages 506-528, November.
  • Handle: RePEc:wly:apsmbi:v:28:y:2012:i:6:p:506-528
    DOI: 10.1002/asmb.925
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.925
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Xingchun & Wang, Wenyuan, 2016. "Optimal investment and risk control for an insurer under inside information," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 104-116.
    2. Yan, Ming & Peng, Fanyi & Zhang, Shuhua, 2017. "A reinsurance and investment game between two insurance companies with the different opinions about some extra information," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 58-70.
    3. Peng, Xingchun & Chen, Fenge & Wang, Wenyuan, 2021. "Robust optimal investment and reinsurance for an insurer with inside information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 15-30.
    4. Peng, Xingchun & Hu, Yijun, 2013. "Optimal proportional reinsurance and investment under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 416-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:28:y:2012:i:6:p:506-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.