IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v28y2012i4p362-380.html
   My bibliography  Save this article

Full and 1‐year runoff risk in the credibility‐based additive loss reserving method

Author

Listed:
  • Michael Merz
  • Mario V. Wüthrich

Abstract

In this paper, we consider the additive loss reserving (ALR) method in a Bayesian and credibility setup. The classical ALR method is a simple claims reserving method that combines prior information (e.g., premiums, number of contracts, market statistics) with claims observations. The Bayesian setup, which we present, in addition, allows for combining the information from a single runoff portfolio (e.g., company‐specific data) with the information from a collective (e.g., industry‐wide data) to analyze the claims reserves and the claims development result. However, in insurance practice, the associated distributions are usually unknown. Therefore, we do not follow the full Bayesian approach but apply credibility theory, which is distribution free and where we only need to know the first and second moments. That is, we derive the credibility predictors that minimize the expected squared loss within the class of affine‐linear functions of the observations (i.e., we derive linear Bayesian predictors). Using non‐informative priors, we link our credibility‐based ALR method to the classical ALR method and show that the credibility predictors coincide with the predictors in the classical ALR method. Moreover, we quantify the 1‐year risk and the full reserve risk by means of the conditional mean square error of prediction. Copyright © 2011 John Wiley & Sons, Ltd.

Suggested Citation

  • Michael Merz & Mario V. Wüthrich, 2012. "Full and 1‐year runoff risk in the credibility‐based additive loss reserving method," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(4), pages 362-380, July.
  • Handle: RePEc:wly:apsmbi:v:28:y:2012:i:4:p:362-380
    DOI: 10.1002/asmb.915
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.915
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:28:y:2012:i:4:p:362-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.