IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v28y2012i1p73-90.html
   My bibliography  Save this article

Analysis of the multiple roots of the Lundberg fundamental equation in the PH (n) risk model

Author

Listed:
  • Lanpeng Ji
  • Chunsheng Zhang

Abstract

In the study of the Sparre Andersen risk model with phase‐type (n) inter‐claim times (PH (n) risk model), the distinct roots of the Lundberg fundamental equation in the right half of the complex plane and the linear independence of the eigenvectors related to the Lundberg matrix Lδ(s) play important roles. In this paper, we study the case where the Lundberg fundamental equation has multiple roots or the corresponding eigenvectors are linearly dependent in the PH (n) risk model. We show that the multiple roots of the Lundberg fundamental equation det[Lδ(s)] = 0 can be approximated by the distinct roots of the generalized Lundberg equation introduced in this paper and that the linearly dependent eigenvectors can be approximated by the corresponding linearly independent ones as well. Using this result we derive the expressions for the Gerber–Shiu penalty function. Two special cases of the generalized Erlang(n) risk model and a Coxian(3) risk model are discussed in detail, which illustrate the applicability of main results. Finally, we consider the PH(2) risk model and conclude that the roots of the Lundberg fundamental equation in the right half of the complex plane are distinct and that the corresponding eigenvectors are linearly independent. Copyright © 2011 John Wiley & Sons, Ltd.

Suggested Citation

  • Lanpeng Ji & Chunsheng Zhang, 2012. "Analysis of the multiple roots of the Lundberg fundamental equation in the PH (n) risk model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(1), pages 73-90, January.
  • Handle: RePEc:wly:apsmbi:v:28:y:2012:i:1:p:73-90
    DOI: 10.1002/asmb.899
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.899
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lanpeng Ji & Chunsheng Zhang, 2014. "A Duality Result for the Generalized Erlang Risk Model," Risks, MDPI, vol. 2(4), pages 1-11, November.
    2. Zhimin Zhang & Eric C. K. Cheung, 2016. "The Markov Additive Risk Process Under an Erlangized Dividend Barrier Strategy," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 275-306, June.
    3. Yang, Chen & Sendova, Kristina P., 2014. "The ruin time under the Sparre-Andersen dual model," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 28-40.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:28:y:2012:i:1:p:73-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.