IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v27y2011i5p503-518.html
   My bibliography  Save this article

Asymptotic finite‐time ruin probabilities for a class of path‐dependent heavy‐tailed claim amounts using Poisson spacings

Author

Listed:
  • Romain Biard
  • Claude Lefèvre
  • Stéphane Loisel
  • Haikady N. Nagaraja

Abstract

In the compound Poisson risk model, several strong hypotheses may be found too restrictive to describe accurately the evolution of the reserves of an insurance company. This is especially true for a company that faces natural disaster risks like earthquake or flooding. For such risks, claim amounts are often inter‐dependent and they may also depend on the history of the natural phenomenon. The present paper is concerned with a situation of this kind, where each claim amount depends on the previous claim inter‐arrival time, or on past claim inter‐arrival times in a more complex way. Our main purpose is to evaluate, for large initial reserves, the asymptotic finite‐time ruin probabilities of the company when the claim sizes have a heavy‐tailed distribution. The approach is based more particularly on the analysis of spacings in a conditioned Poisson process. Copyright © 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Romain Biard & Claude Lefèvre & Stéphane Loisel & Haikady N. Nagaraja, 2011. "Asymptotic finite‐time ruin probabilities for a class of path‐dependent heavy‐tailed claim amounts using Poisson spacings," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(5), pages 503-518, September.
  • Handle: RePEc:wly:apsmbi:v:27:y:2011:i:5:p:503-518
    DOI: 10.1002/asmb.857
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.857
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaohu & Wu, Jintang, 2014. "Asymptotic tail behavior of Poisson shot-noise processes with interdependence between shock and arrival time," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 15-26.
    2. Søren Asmussen & Romain Biard, 2011. "Ruin probabilities for a regenerative Poisson gap generated risk process," Post-Print hal-00569254, HAL.
    3. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:27:y:2011:i:5:p:503-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.