IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v27y2011i3p204-221.html
   My bibliography  Save this article

An examination of HMM‐based investment strategies for asset allocation

Author

Listed:
  • Christina Erlwein
  • Rogemar Mamon
  • Matt Davison

Abstract

We develop and analyse investment strategies relying on hidden Markov model approaches. In particular, we use filtering techniques to aid an investor in his decision to allocate all of his investment fund to either growth or value stocks at a given time. As this allows the investor to switch between growth and value stocks, we call this first strategy a switching investment strategy. This switching strategy is compared with the strategies of purely investing in growth or value stocks by tracking the quarterly terminal wealth of a hypothetical portfolio for each strategy. Using the data sets on Russell 3000 growth index and Russell 3000 value index compiled by Russell Investment Services for the period 1995–2008, we find that the overall risk‐adjusted performance of the switching strategy is better than that of solely investing in either one of the indices. We also consider a second strategy referred to as a mixed investment strategy which enables the investor to allocate an optimal proportion of his investment between growth and value stocks given a level of risk aversion. Numerical demonstrations are provided using the same data sets on Russell 3000 growth and value indices. The switching investment strategy yields the best or second best Sharpe ratio as compared with those obtained from the pure index strategies and mixed strategy in 14 intervals. The performance of the mixed investment strategy under the HMM setting is also compared with that of the classical mean–variance approach. To make the comparison valid, we choose the same level of risk aversion for each set‐up. Our findings show that the mixed investment strategy within the HMM framework gives higher Sharpe ratios in 5 intervals of the time series than that given by the standard mean–variance approach. The calculated weights through time from the strategy incorporating the HMM set‐up are more stable. A simulation analysis further shows a higher performance stability of the HMM strategies compared with the pure strategies and the mean–variance strategy. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Christina Erlwein & Rogemar Mamon & Matt Davison, 2011. "An examination of HMM‐based investment strategies for asset allocation," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(3), pages 204-221, May.
  • Handle: RePEc:wly:apsmbi:v:27:y:2011:i:3:p:204-221
    DOI: 10.1002/asmb.820
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.820
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:27:y:2011:i:3:p:204-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.