IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v26y2010i6p705-736.html
   My bibliography  Save this article

Optimal server allocation in general, finite, multi‐server queueing networks

Author

Listed:
  • J. MacGregor Smith
  • F. R. B. Cruz
  • T. van Woensel

Abstract

Queueing networks with finite buffers, multiple servers, arbitrary acyclic, series‐parallel topologies, and general service time distributions are considered in this paper. An approach to optimally allocate servers to series, merge, and split topologies and their combinations is demonstrated. The methodology builds on two‐moment approximations to the service time distribution embedded in the generalized expansion method for computing the performance measures in complex finite queueing networks and Powell's algorithm for optimally allocating servers to the network topology. Convexity of the objective function along with results from computational experiments is presented for showing the efficacy of the methodology. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • J. MacGregor Smith & F. R. B. Cruz & T. van Woensel, 2010. "Optimal server allocation in general, finite, multi‐server queueing networks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 705-736, November.
  • Handle: RePEc:wly:apsmbi:v:26:y:2010:i:6:p:705-736
    DOI: 10.1002/asmb.813
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.813
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
    2. H. S. R. Martins & F. R. B. Cruz & A. R. Duarte & F. L. P. Oliveira, 2019. "Modeling and optimization of buffers and servers in finite queueing networks," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 123-150, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:26:y:2010:i:6:p:705-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.