IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v24y2008i2p109-128.html
   My bibliography  Save this article

Upper bound for ruin probabilities under optimal investment and proportional reinsurance

Author

Listed:
  • Zhibin Liang
  • Junyi Guo

Abstract

In this paper, we consider the optimal investment and reinsurance from an insurer's point of view to maximize the adjustment coefficient. We obtain the explicit expressions for the optimal results in the diffusion approximation (D‐A) case as well as in the jump‐diffusion (J‐D) case. Furthermore, we derive a sharper bound on the ruin probability, from which we conclude that the case with investment is always better than the case without investment. Some numerical examples are presented to show that the ruin probability in the D‐A case sometimes underestimates the ruin probability in the J‐D case. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Zhibin Liang & Junyi Guo, 2008. "Upper bound for ruin probabilities under optimal investment and proportional reinsurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(2), pages 109-128, March.
  • Handle: RePEc:wly:apsmbi:v:24:y:2008:i:2:p:109-128
    DOI: 10.1002/asmb.694
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.694
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    2. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    3. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    4. Xiang Hu & Lianzeng Zhang, 2016. "Ruin Probability in a Correlated Aggregate Claims Model with Common Poisson Shocks: Application to Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 675-689, September.
    5. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    6. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    7. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    8. Meng, Hui & Wei, Li & Zhou, Ming, 2023. "Multiple per-claim reinsurance based on maximizing the Lundberg exponent," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 33-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:24:y:2008:i:2:p:109-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.