IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v22y2006i2p127-137.html
   My bibliography  Save this article

Posterior sampling with constructed likelihood functions: an application to flowgraph models

Author

Listed:
  • Brian J. Williams
  • Aparna V. Huzurbazar

Abstract

We consider posterior sampling in situations where data are incomplete in such a way that likelihood functions corresponding to portions of the data must be constructed. Slice sampling, a recently developed Markov chain Monte Carlo method, makes such computation feasible. Such situations arise in the context of stochastic networks where an overall predictive waiting time is comprised of convolutions and finite mixtures of individual transitions and portions of the individual transition information is unobserved for some records. We present applications involving flowgraph models in the reliability setting; however, the methodology presented is relevant to any application where likelihood functions cannot be specified in closed form but can be evaluated numerically. Copyright © 2006 John Wiley & Sons, Ltd.

Suggested Citation

  • Brian J. Williams & Aparna V. Huzurbazar, 2006. "Posterior sampling with constructed likelihood functions: an application to flowgraph models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(2), pages 127-137, March.
  • Handle: RePEc:wly:apsmbi:v:22:y:2006:i:2:p:127-137
    DOI: 10.1002/asmb.623
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.623
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David H Collins & Richard L Warr & Aparna V Huzurbazar, 2013. "An introduction to statistical flowgraph models for engineering systems," Journal of Risk and Reliability, , vol. 227(5), pages 461-470, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:22:y:2006:i:2:p:127-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.