IDEAS home Printed from https://ideas.repec.org/a/wly/amposc/v56y2012i1p237-256.html
   My bibliography  Save this article

Understanding the Past: Statistical Analysis of Causal Attribution

Author

Listed:
  • Teppei Yamamoto

Abstract

Would the third‐wave democracies have been democratized without prior modernization? What proportion of the past militarized disputes between nondemocracies would have been prevented had those dyads been democratic? Although political scientists often ask these questions of causal attribution, existing quantitative methods fail to address them. This article proposes an alternative statistical methodology based on the widely accepted counterfactual framework of causal inference. The contribution of this article is threefold. First, it clarifies differences between causal attribution and causal effects by specifying the type of research questions to which each quantity is relevant. Second, it provides a clear resolution of the long‐standing methodological debate on “selection on the dependent variable.” Third, the article derives new nonparametric identification results, showing that the complier probability of causal attribution can be identified using an instrumental variable. The proposed framework is illustrated via empirical examples from three subfields of political science.

Suggested Citation

  • Teppei Yamamoto, 2012. "Understanding the Past: Statistical Analysis of Causal Attribution," American Journal of Political Science, John Wiley & Sons, vol. 56(1), pages 237-256, January.
  • Handle: RePEc:wly:amposc:v:56:y:2012:i:1:p:237-256
    DOI: 10.1111/j.1540-5907.2011.00539.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1540-5907.2011.00539.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1540-5907.2011.00539.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Corradi & Monica Musio, 2020. "Causes of effects via a Bayesian model selection procedure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1777-1792, October.
    2. Andrew Gelman & Guido Imbens, 2013. "Why ask Why? Forward Causal Inference and Reverse Causal Questions," NBER Working Papers 19614, National Bureau of Economic Research, Inc.
    3. Victor Quintas-Martinez & Mohammad Taha Bahadori & Eduardo Santiago & Jeff Mu & Dominik Janzing & David Heckerman, 2024. "Multiply-Robust Causal Change Attribution," Papers 2404.08839, arXiv.org, revised Sep 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:amposc:v:56:y:2012:i:1:p:237-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5907 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.