IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v18y2017i3p481-500n4.html
   My bibliography  Save this article

Option for Predicting the Czech Republic’S Foreign Trade Time Series as Components in Gross Domestic Product

Author

Listed:
  • Marek Luboš

    (Department of Statistics and Probability, University of Economics, Prague, Czech)

  • Hronová Stanislava

    (Department of Economic Statistics, University of Economics, Prague, Czech)

  • Hindis Richard

    (Department of Statistics and Probability, University of Economics, Prague, Czech)

Abstract

This paper analyses the time series observed for the foreign trade of the Czech Republic (CR) and predictions in such series with the aid of the SARIMA and transfer-function models. Our goal is to find models suitable for describing the time series of the exports and imports of goods and services from/to the CR and to subsequently use these models for predictions in quarterly estimates of the gross domestic product (GDP) component resources and utilization. As a result we get suitable models with a time lag, and predictions in the time series of the CR exports and imports several months ahead.

Suggested Citation

  • Marek Luboš & Hronová Stanislava & Hindis Richard, 2017. "Option for Predicting the Czech Republic’S Foreign Trade Time Series as Components in Gross Domestic Product," Statistics in Transition New Series, Statistics Poland, vol. 18(3), pages 481-500, September.
  • Handle: RePEc:vrs:stintr:v:18:y:2017:i:3:p:481-500:n:4
    DOI: 10.21307/stattrans-2016-082
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2016-082
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2016-082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Mr. Marco Marini, 2016. "Nowcasting Annual National Accounts with Quarterly Indicators: An Assessment of Widely Used Benchmarking Methods," IMF Working Papers 2016/071, International Monetary Fund.
    3. Reinier Bikker & Jacco Daalmans & Nino Mushkudiani, 2013. "Benchmarking Large Accounting Frameworks: A Generalized Multivariate Model," Economic Systems Research, Taylor & Francis Journals, vol. 25(4), pages 390-408, December.
    4. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, July.
    5. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    6. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    7. J. C. G. Boot & W. Feibes & J. H. C. Lisman, 1967. "Further Methods of Derivation of Quarterly Figures from Annual Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(1), pages 65-75, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luboš Marek & Stanislava Hronová & Richard Hindls, 2017. "Option For Predicting The Czech Republic'S Foreign Trade Time Series As Components In Gross Domestic Product," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 481-500, September.
    2. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    3. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    4. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    5. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    6. Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
    7. Klaus Abberger & Michael Graff & Oliver Müller & Boriss Siliverstovs, 2023. "Imputing Monthly Values for Quarterly Time Series: An Application Performed with Swiss Business Cycle Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(3), pages 241-273, November.
    8. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.
    9. Paul Labonne & Martin Weale, 2020. "Temporal disaggregation of overlapping noisy quarterly data: estimation of monthly output from UK value‐added tax data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1211-1230, June.
    10. Ángel Cuevas & Enrique Quilis, 2012. "A factor analysis for the Spanish economy," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(3), pages 311-338, September.
    11. Víctor M. Guerrero & Francisco Corona, 2018. "Retropolating some relevant series of Mexico's System of National Accounts at constant prices: The case of Mexico City's GDP," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 495-519, November.
    12. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    13. Müller-Kademann Christian, 2015. "Internal Validation of Temporal Disaggregation: A Cloud Chamber Approach," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(3), pages 298-319, June.
    14. Rossana, Robert J., 1988. "Interrelated Demands for Buffer Stocks and Productive Inputs: Estimates for Two-Digit Manufacturing Industries," Department of Economics and Business - Archive 259428, North Carolina State University, Department of Economics.
    15. Zanini, Fabio C. & Irwin, Scott H. & Schnitkey, Gary D. & Sherrick, Bruce J., 2000. "Estimating Farm-Level Yield Distributions For Corn And Soybeans In Illinois," 2000 Annual meeting, July 30-August 2, Tampa, FL 21720, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    17. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    18. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    19. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    20. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:18:y:2017:i:3:p:481-500:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.