IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v17y2016i3p391-410n11.html
   My bibliography  Save this article

Sujatha Distribution and its Applications

Author

Listed:
  • Shanker Rama

    (Department of Statistics, Asmara, Eritrea)

Abstract

In this paper a new one-parameter lifetime distribution named “Sujatha Distribution” with an increasing hazard rate for modelling lifetime data has been suggested. Its first four moments about origin and moments about mean have been obtained and expressions for coefficient of variation, skewness, kurtosis and index of dispersion have been given. Various mathematical and statistical properties of the proposed distribution including its hazard rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves, and stress-strength reliability have been discussed. Estimation of its parameter has been discussed using the method of maximum likelihood and the method of moments. The applications and goodness of fit of the distribution have been discussed with three real lifetime data sets and the fit has been compared with one-parameter lifetime distributions including Akash, Shanker, Lindley and exponential distributions.

Suggested Citation

  • Shanker Rama, 2016. "Sujatha Distribution and its Applications," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 391-410, September.
  • Handle: RePEc:vrs:stintr:v:17:y:2016:i:3:p:391-410:n:11
    DOI: 10.21307/stattrans-2016-029
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2016-029
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2016-029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    3. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    4. Ghitany, M.E. & Al-Mutairi, D.K. & Balakrishnan, N. & Al-Enezi, L.J., 2013. "Power Lindley distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 20-33.
    5. A. Mishra & R. Shanker, 2013. "A two-parameter Lindley distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 45-56, March.
    6. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rama Shanker, 2016. "Sujatha Distribution And Its Applications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 391-410, September.
    2. R. Shanker, 2016. "Sujatha Distribution and its Applications," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 391-410, September.
    3. A. Shabani & M. Khaleghi Moghadam & A. Gholami & E. Moradi, 2018. "Exponentiated Power Lindley Logarithmic: Model, Properties and Applications," Annals of Data Science, Springer, vol. 5(4), pages 583-613, December.
    4. Shanker R & Kamlesh KK & Fesshaye H, 2017. "A Two Parameter Lindley Distribution: Its Properties and Applications," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 1(4), pages 85-90, May.
    5. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    6. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    7. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    8. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    9. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    10. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    11. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    12. Iman Makhdoom & Parviz Nasiri & Abbas Pak, 2016. "Bayesian approach for the reliability parameter of power Lindley distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 341-355, September.
    13. Shikhar Tyagi & Arvind Pandey & Christophe Chesneau, 2022. "Weighted Lindley Shared Regression Model for Bivariate Left Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 655-682, November.
    14. Mahendra Saha & Harsh Tripathi & Sanku Dey & Sudhansu S. Maiti, 2021. "Acceptance sampling inspection plan for the Lindley and power Lindley distributed quality characteristics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1410-1419, December.
    15. Shukla Kamlesh Kumar & Shanker Rama, 2018. "Power Ishita Distribution And Its Application To Model Lifetime Data," Statistics in Transition New Series, Statistics Poland, vol. 19(1), pages 135-148, March.
    16. Wenhao Gui & Huainian Zhang & Lei Guo, 2017. "The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 316-335, November.
    17. V. Ranjbar & M. Alizadeh & G. G. Hademani, 2018. "Extended Exponentiated Power Lindley Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 621-643, December.
    18. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    19. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    20. Morad Alizadeh & Emrah Altun & Gamze Ozel & Mahmoud Afshari & Abbas Eftekharian, 2019. "A New Odd Log-Logistic Lindley Distribution with Properties and Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 323-346, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:17:y:2016:i:3:p:391-410:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.