IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v38y2022i3p709-732n5.html
   My bibliography  Save this article

Hierarchical Bayesian Model with Inequality Constraints for US County Estimates

Author

Listed:
  • Chen Lu

    (National Institute of Statistical Sciences, 1750 K Street, NW, Suite 1100, Washington. D.C., 20006-2306, U.S.A.)

  • Nandram Balgobin

    (Worcester Polytechnic Institute and USDA National Agricultural statistics Service, Department of Mathematical Sciences, Stratton Hall, 100 Institute Road, Worcester, MA 01609. U.S.A.)

  • Cruze Nathan B.

    (USDA National Agricultural statistics Service, 1400 Independence Avenue, SW, Washington, D.C. 20250-2054.)

Abstract

In the production of US agricultural official statistics, certain inequality and benchmarking constraints must be satisfied. For example, available administrative data provide an accurate lower bound for the county-level estimates of planted acres, produced by the U.S. Department of Agriculture’s (USDA) National Agricultural statistics Services (NASS). In addition, the county-level estimates within a state need to add to the state-level estimates. A sub-area hierarchical Bayesian model with inequality constraints to produce county-level estimates that satisfy these important relationships is discussed, along with associated measures of uncertainty. This model combines the County Agricultural Production Survey (CAPS) data with administrative data. Inequality constraints add complexity to fitting the model and present a computational challenge to a full Bayesian approach. To evaluate the inclusion of these constraints, the models with and without inequality constraints were compared using 2014 corn planted acres estimates for three states. The performance of the model with inequality constraints illustrates the improvement of county-level estimates in accuracy and precision while preserving required relationships.

Suggested Citation

  • Chen Lu & Nandram Balgobin & Cruze Nathan B., 2022. "Hierarchical Bayesian Model with Inequality Constraints for US County Estimates," Journal of Official Statistics, Sciendo, vol. 38(3), pages 709-732, September.
  • Handle: RePEc:vrs:offsta:v:38:y:2022:i:3:p:709-732:n:5
    DOI: 10.2478/jos-2022-0032
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2022-0032
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2022-0032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nandram, Balgobin & Cruze, Nathan B & Erciulescu, Andreea L & Chen, Lu, 2022. "Bayesian Small Area Models under Inequality Constraints with Benchmarking and Double Shrinkage," NASS Research Reports 327250, United States Department of Agriculture, National Agricultural Statistics Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Chen & Luca Sartore & Habtamu Benecha & Valbona Bejleri & Balgobin Nandram, 2022. "Smoothing County-Level Sampling Variances to Improve Small Area Models’ Outputs," Stats, MDPI, vol. 5(3), pages 1-18, September.
    2. Linda J. Young & Lu Chen, 2022. "Using Small Area Estimation to Produce Official Statistics," Stats, MDPI, vol. 5(3), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:38:y:2022:i:3:p:709-732:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.