IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v34y2018i4p889-908n5.html
   My bibliography  Save this article

Population Size Estimation and Linkage Errors: the Multiple Lists Case

Author

Listed:
  • Di Consiglio Loredana

    (Italian National Institute of Statistics (Istat), via Balbo 16, 00184Roma, Italy.)

  • Tuoto Tiziana

    (Italian National Institute of Statistics (Istat), via Balbo 16, 00184Roma, Italy.)

Abstract

Data integration is now common practice in official statistics and involves an increasing number of sources. When using multiple sources, an objective is to assess the unknown size of the population. To this aim, capture-recapture methods are applied. Standard capture-recapture methods are based on a number of strong assumptions, including the absence of errors in the integration procedures. However, in particular when the integrated sources were not originally collected for statistical purposes, this assumption is unlikely and linkage errors (false links and missing links) may occur. In this article, the problem of adjusting population estimates in the presence of linkage errors in multiple lists is tackled; under homogeneous linkage error probabilities assumption, a solution is proposed in a realistic and practical scenario of multiple lists linkage procedure.

Suggested Citation

  • Di Consiglio Loredana & Tuoto Tiziana, 2018. "Population Size Estimation and Linkage Errors: the Multiple Lists Case," Journal of Official Statistics, Sciendo, vol. 34(4), pages 889-908, December.
  • Handle: RePEc:vrs:offsta:v:34:y:2018:i:4:p:889-908:n:5
    DOI: 10.2478/jos-2018-0044
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2018-0044
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2018-0044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alessio Farcomeni & Luca Tardella, 2010. "Reference Bayesian methods for recapture models with heterogeneity," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 187-208, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Xu & Dongchu Sun & Chong He, 2014. "Objective Bayesian analysis for a capture–recapture model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 245-278, April.
    2. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    3. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:34:y:2018:i:4:p:889-908:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.