IDEAS home Printed from https://ideas.repec.org/a/vrs/logitl/v11y2020i1p78-87n8.html
   My bibliography  Save this article

Possible Application of Solver Optimization Module for Solving Single-circuit Transport Problems

Author

Listed:
  • Šedivý Josef

    (University of Pardubice., Department of Transport Management, Marketing and Logistics, Studentská 95, 532 10 Pardubice, Czech Republic)

  • Čejka Jiří

    (Institute of Technology and Business in České Budějovice., Department of Informatics and Natural Sciences, Okružní 517/10, 370 01 České Budějovice, Czech Republic)

  • Guchenko Mykola

    (Kremenchuk Mykhailo Ostrogradskyi National University., Department of Computer and Information Systems, Pershotravneva st. 20, 39600 Kremenchuk, Ukraine)

Abstract

The article deals with the possible application of the Solver optimization module to solving the single-circuit transport problems. First, the article describes the single-circuit transport problems and the optimization module Solver itself. Using the specific model example of beer distribution, the author demonstrates the algorithm which may be applied to solving single-circuit transport problems by means of Solver. The travel route designed by Solver is then compared with the originally proposed route. The values being compared include the total length of travel routes created and the associated variable costs spent on serving customers and also route design time. Thus, using the practical example of beer distribution, the manuscript has demonstrated the algorithm which is used for addressing the single-circuit transport problems. Nonetheless, possible application of the Solver tool is not limited to seeking a solution to the travelling salesman problem only. It can also be implemented even to discussing the multi-circuit transport problems with various confinements.

Suggested Citation

  • Šedivý Josef & Čejka Jiří & Guchenko Mykola, 2020. "Possible Application of Solver Optimization Module for Solving Single-circuit Transport Problems," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 11(1), pages 78-87, May.
  • Handle: RePEc:vrs:logitl:v:11:y:2020:i:1:p:78-87:n:8
    DOI: 10.2478/logi-2020-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/logi-2020-0008
    Download Restriction: no

    File URL: https://libkey.io/10.2478/logi-2020-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. Daniel Fylstra & Leon Lasdon & John Watson & Allan Waren, 1998. "Design and Use of the Microsoft Excel Solver," Interfaces, INFORMS, vol. 28(5), pages 29-55, October.
    3. Ondrej Stopka & Maria Stopkova & Rudolf Kampf, 2019. "Application of the Operational Research Method to Determine the Optimum Transport Collection Cycle of Municipal Waste in a Predesignated Urban Area," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    4. Duan, C. J. & Hu, J. & Garrott, S.C., 2016. "Using Excel Solver to Solve Braydon Farms’ Truck Routing Problem: A Case Study," South Asian Journal of Management Sciences (SAJMS), Iqra University, Iqra University, vol. 10(1), pages 38-47, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    2. Thomas A. Grossman, 2002. "Student Consulting Projects Benefit Faculty and Industry," Interfaces, INFORMS, vol. 32(2), pages 42-48, April.
    3. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    4. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    5. L. Gharis & J. Roise & J. McCarter, 2015. "A compromise programming model for developing the cost of including carbon pools and flux into forest management," Annals of Operations Research, Springer, vol. 232(1), pages 115-133, September.
    6. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    7. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    8. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    9. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    10. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    11. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    13. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    14. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    15. Benjamin Lev, 2000. "Book Reviews," Interfaces, INFORMS, vol. 30(2), pages 112-121, April.
    16. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    17. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    18. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    19. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    20. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi, 2011. "An Exact Algorithm for the Pickup and Delivery Problem with Time Windows," Operations Research, INFORMS, vol. 59(2), pages 414-426, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:logitl:v:11:y:2020:i:1:p:78-87:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.