IDEAS home Printed from https://ideas.repec.org/a/vrs/jecman/v37y2019i3p156-177n6.html
   My bibliography  Save this article

Multi-objective data envelopment analysis: A game of multiple attribute decision-making

Author

Listed:
  • Chen Yuh Wen

    (Institute of Industrial Engineering and Management, College of Engineering, Da-Yeh University, Chang Hwa, Taiwan)

Abstract

Aim/purpose ‒ The traditional data envelopment analysis (DEA) is popularly used to evaluate the relative efficiency among public or private firms by maximising each firm’s efficiency: the decision maker only considers one decision-making unit (DMU) at one time; thus, if there are n firms for computing efficiency scores, the resolution of n similar problems is necessary. Therefore, the multi-objective linear programming (MOLP) problem is used to simplify the complexity. Design/methodology/approach ‒ According to the similarity between the DEA and the multiple attribute decision making (MADM), a game of MADM is proposed to solve the DEA problem. Related definitions and proofs are provided to clarify this particular approach. Findings ‒ The multi-objective DEA is validated to be a unique MADM problem in this study: the MADM game for DEA is eventually identical to the weighting multi-objective DEA. This MADM game for DEA is used to rank ten LCD companies in Taiwan for their research and development (R&D) efficiencies to show its practical application. Research implications/limitations ‒ The main advantage of using an MADM game on the weighting multi-objective DEA is that the decision maker does not need to worry how to set these weights among DMUs/objectives, this MADM game will decide the weights among DMUs by the game theory. However, various DEA models are eventually evaluation tools. No one can guarantee us with 100% confidence that their evaluated results of DEA could be the absolute standard. Readers should analyse the results with care. Originality/value/contribution ‒ A unique link between the multi-objective CCR DEA and the MADM game for DEA is established and validated in this study. Previous scholars seldom explored and developed this breathtaking view before.

Suggested Citation

  • Chen Yuh Wen, 2019. "Multi-objective data envelopment analysis: A game of multiple attribute decision-making," Journal of Economics and Management, Sciendo, vol. 37(3), pages 156-177, September.
  • Handle: RePEc:vrs:jecman:v:37:y:2019:i:3:p:156-177:n:6
    DOI: 10.22367/jem.2019.37.08
    as

    Download full text from publisher

    File URL: https://doi.org/10.22367/jem.2019.37.08
    Download Restriction: no

    File URL: https://libkey.io/10.22367/jem.2019.37.08?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tarja Joro & Pekka Korhonen & Jyrki Wallenius, 1998. "Structural Comparison of Data Envelopment Analysis and Multiple Objective Linear Programming," Management Science, INFORMS, vol. 44(7), pages 962-970, July.
    2. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    2. Peter Nijkamp & Soushi Suzuki, 2009. "A Generalized Goals-achievement Model in Data Envelopment Analysis: an Application to Efficiency Improvement in Local Government Finance in Japan," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(3), pages 249-274.
    3. Castillo, Ignacio & Joro, Tarja & Li, Yong Yue, 2009. "Workforce scheduling with multiple objectives," European Journal of Operational Research, Elsevier, vol. 196(1), pages 162-170, July.
    4. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    5. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    6. Ehrgott, Matthias & Tind, Jørgen, 2009. "Column generation with free replicability in DEA," Omega, Elsevier, vol. 37(5), pages 943-950, October.
    7. Lovell, Knox, 2001. "Future Research Opportunities in Efficiency and Productivity Analysis," Efficiency Series Papers 2001/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    8. Soushi Suzuki & Peter Nijkamp, 2013. "A Stepwise Efficiency Improvement DEA Model for Airport Management with a Fixed Runway Capacity," Tinbergen Institute Discussion Papers 13-105/VIII, Tinbergen Institute.
    9. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    10. De Clercq, Djavan & Wen, Zongguo & Caicedo, Luis & Cao, Xin & Fan, Fei & Xu, Ruifei, 2017. "Application of DEA and statistical inference to model the determinants of biomethane production efficiency: A case study in south China," Applied Energy, Elsevier, vol. 205(C), pages 1231-1243.
    11. Chang, Ming-Chung, 2016. "Applying the energy productivity index that considers maximized energy reduction on SADC (Southern Africa Development Community) members," Energy, Elsevier, vol. 95(C), pages 313-323.
    12. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    13. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    14. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    15. Weibin Lin & Jin Yang & Bin Chen, 2011. "Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index," Energies, MDPI, vol. 4(9), pages 1-15, September.
    16. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    17. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Sharifi, Mohammad & Hosseinpour, Soleiman & Shah, Ajay, 2017. "Combined application of Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 807-820.
    18. Nihal Ahmed & Zeeshan Hamid & Farhan Mahboob & Khalil Ur Rehman & Muhammad Sibt e Ali & Piotr Senkus & Aneta Wysokińska-Senkus & Paweł Siemiński & Adam Skrzypek, 2022. "Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
    19. Harald Dyckhoff, 2018. "Multi-criteria production theory: foundation of non-financial and sustainability performance evaluation," Journal of Business Economics, Springer, vol. 88(7), pages 851-882, September.
    20. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.

    More about this item

    Keywords

    Multi-Objective Linear Programming (MOLP); Data Envelopment Analysis (DEA); Multiple Attribute Decision Making (MADM); Research and Development (R&D) efficiency;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:jecman:v:37:y:2019:i:3:p:156-177:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.