Author
Listed:
- Bąska Mateusz
(Department of Information Technology, Faculty of Management, Computer Science & Finance, Wroclaw University of Economics, Wroclaw, Poland)
- Dudycz Helena
(Department of Information Technology, Faculty of Management, Computer Science & Finance, Wroclaw University of Economics, Wroclaw, Poland)
- Pondel Maciej
(Department of Business Intelligence in Management, Faculty of Management, Wroclaw University of Economics, Wroclaw, Poland)
Abstract
Aim/purpose – Marketing is an important area of activity for the vast majority of enterprises. Many of them try using marketing data analysis. Both the literature and the practice of many enterprises describe the use of advanced data analysis. However, interpretations of this concept differ. The aim of this paper is to identify the interpretation of advanced data analysis in marketing, in support of decision-making processes applied in the retail trading sector. Design/methodology/approach – The study was conducted using a systematic literature review, suggested by B. Kitchenham (2004), extended by C. Wohlin & R. Prikladniki (2013). This method was modified and expanded through the division of the whole study into two phases. Each phase is intended to facilitate obtaining answers to different important research questions. The first phase constitutes an exploratory study, whose results allow the detailed analysis of the literature in the second phase of the study. Findings – The results of this study of the relevant literature indicate that scholarly publications do not use the phrase ‘advanced data analysis’, and its context is described with the term ‘data analysis’. Another term used broadly within the sphere of data analysis is ‘big data’. The concept of ‘data analysis’ in marketing is focused around the term ‘big data analytics’ and terms linked to the word ‘customer’, such as ‘customer-centric’, ‘customer engagement’, ‘customer experience’, ‘customer targeting service’, and ‘customers classification’. The study of the literature undertaken indicates that marketing employs data analysis in such areas as customer needs identification and market segmentation. Research implications/limitations – The study of the literature review was carried out using selected four databases containing publications, i.e. Web of Science, IEEE, Springer and ACM for the period 2008 to 2018. The research described in the article can be continued in two ways. First, by analysing the literature presented in this paper on advanced data analysis in marketing using the method called snowball sampling. Secondly, the results obtained from the first stage of the study can be used to conduct the study with other databases. Originality/value/contribution – The main contribution of this work is the proposal of modifying the systematic literature review method, which was expanded through the introduction of two phases. This division of two stages is important for conducting studies of literature when there are no clear, established definitions for the concepts being employed. The result of the study is also a set of ordered terms and their meanings that clearly define advanced data analysis in marketing.
Suggested Citation
Bąska Mateusz & Dudycz Helena & Pondel Maciej, 2019.
"Identification of advanced data analysis in marketing: A systematic literature review,"
Journal of Economics and Management, Sciendo, vol. 35(1), pages 18-39, March.
Handle:
RePEc:vrs:jecman:v:35:y:2019:i:1:p:18-39:n:3
DOI: 10.22367/jem.2019.35.02
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:jecman:v:35:y:2019:i:1:p:18-39:n:3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.