Author
Listed:
- Niedoba Tomasz
(Dr hab. inż., AGH Akademia Górniczo-Hutnicza, Wydział Górnictwa i Geoinżynierii, Katedra Inżynierii Środowiska i Przeróbki Surowców, Kraków)
Abstract
In this paper, the grained material analyzed was hard coal collected from one of the mines located in Upper Silesia. Material was collected from a dust jig where it was separated in industrial conditions by concentrate and waste. It was then screened in sieves and it was separated in dense media into density fractions. Both particle size distribution and particle density distribution for feed and concentrate were approximated by several classical distribution functions. The best results were obtained by means of the Weibull (RRB) distribution function. However, because of the unsatisfying quality of approximations it was decided to apply non-parametric statistical methods, which became more and more popular alternative methods in conducting statistical investigations. In the paper, the kernel methods were applied to this purpose and the Gauss kernel was accepted as the kernel function. Kernel method, which is relatively new, gave much better results than classical distribution functions by means of the least squared method. Both classical and non-parametric obtained distribution functions were evaluated by means of mean standard error, the values of which proved that they sufficiently well approximate the empirical data. Such function forms were then applied to determine the theoretical distribution function for vector (D, P), where D is the random variable describing particle size and P – its density. This approximation was sufficiently acceptable. That is why it served to determine the equation of partition surface dependent on particle size and particle density describing researched material. The obtained surface proves that it is possible to evaluate material separation which occurs during mineral processing operations, such as jigging, by means of more than one feature of researched material. Furthermore, its quality confirms that it is justified to apply non-parametric statistical methods instead of commonly used classical ones.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:gosmin:v:32:y:2016:i:1:p:137-154:n:10. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.