IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v6y2018i1p47-62n3.html
   My bibliography  Save this article

Maximum asymmetry of copulas revisited

Author

Listed:
  • Kamnitui Noppadon

    (Department for Mathematics, University of Salzburg, Salzburg, Austria)

  • Fernández-Sánchez Juan

    (Grupo de Investigación de Análisis Matemático, Universidad de Almería, La Cañada de San Urbano, Almería, Spain)

  • Trutschnig Wolfgang

    (Department for Mathematics, University of Salzburg, Salzburg, Austria)

Abstract

Motivated by the nice characterization of copulas A for which d∞(A, At) is maximal as established independently by Nelsen [11] and Klement & Mesiar [7], we study maximum asymmetry with respect to the conditioning-based metric D1 going back to Trutschnig [12]. Despite the fact that D1(A, At) is generally not straightforward to calculate, it is possible to provide both, a characterization and a handy representation of all copulas A maximizing D1(A, At). This representation is then used to prove the existence of copulas with full support maximizing D1(A, At). A comparison of D1- and d∞-asymmetry including some surprising examples rounds off the paper.

Suggested Citation

  • Kamnitui Noppadon & Fernández-Sánchez Juan & Trutschnig Wolfgang, 2018. "Maximum asymmetry of copulas revisited," Dependence Modeling, De Gruyter, vol. 6(1), pages 47-62, February.
  • Handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:47-62:n:3
    DOI: 10.1515/demo-2018-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2018-0003
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2018-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roger Nelson, 2007. "Extremes of nonexchangeability," Statistical Papers, Springer, vol. 48(2), pages 329-336, April.
    2. Harder, Michael & Stadtmüller, Ulrich, 2014. "Maximal non-exchangeability in dimension d," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 31-41.
    3. Juan Fernández Sánchez & Wolfgang Trutschnig, 2016. "Some members of the class of (quasi-)copulas with given diagonal from the Markov kernel perspective," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1508-1526, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasper Thimo M. & Fuchs Sebastian & Trutschnig Wolfgang, 2021. "On convergence of associative copulas and related results," Dependence Modeling, De Gruyter, vol. 9(1), pages 307-326, January.
    2. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    3. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    4. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
    5. Monica Billio & Lorenzo Frattarolo & Dominique Guegan, 2017. "Multivariate Reflection Symmetry of Copula Functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592147, HAL.
    6. Hua, Lei & Polansky, Alan & Pramanik, Paramahansa, 2019. "Assessing bivariate tail non-exchangeable dependence," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    7. repec:bpj:demode:v:6:y:2018:i:1:p:139-155:n:9 is not listed on IDEAS
    8. Fabrizio Durante & Juan Fernández Sánchez & Wolfgang Trutschnig, 2020. "Spatially homogeneous copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 607-626, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:47-62:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.