IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v6y2018i1p369-376n21.html
   My bibliography  Save this article

A sharp inequality for Kendall’s τ and Spearman’s ρ of Extreme-Value Copulas

Author

Listed:
  • Trutschnig Wolfgang

    (Department for Mathematics, University of Salzburg,Salzburg, Austria)

  • Mroz Thomas

    (Department for Mathematics, University of Salzburg,Salzburg, Austria)

Abstract

We derive a new (lower) inequality between Kendall’s τ and Spearman’s ρ for two-dimensional Extreme-Value Copulas, show that this inequality is sharp in each point and conclude that the comonotonic and the product copula are the only Extreme-Value Copulas for which the well-known lower Hutchinson-Lai inequality is sharp.

Suggested Citation

  • Trutschnig Wolfgang & Mroz Thomas, 2018. "A sharp inequality for Kendall’s τ and Spearman’s ρ of Extreme-Value Copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 369-376, December.
  • Handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:369-376:n:21
    DOI: 10.1515/demo-2018-0021
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2018-0021
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2018-0021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manuela Schreyer & Roland Paulin & Wolfgang Trutschnig, 2017. "On the exact region determined by Kendall's τ and Spearman's ρ," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 613-633, March.
    2. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    2. Shyamalkumar, Nariankadu D. & Tao, Siyang, 2022. "t-copula from the viewpoint of tail dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    3. Zheng Wei & Seongyong Kim & Boseung Choi & Daeyoung Kim, 2019. "Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 365-387, January.
    4. Oleg Sokolinskiy, 2020. "Conditional dependence in post-crisis markets: dispersion and correlation skew trades," Review of Quantitative Finance and Accounting, Springer, vol. 55(2), pages 389-426, August.
    5. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    6. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
    7. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    8. Chabi-Yo, Fousseni & Huggenberger, Markus & Weigert, Florian, 2022. "Multivariate crash risk," Journal of Financial Economics, Elsevier, vol. 145(1), pages 129-153.
    9. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    10. Yali Dou & Haiyan Liu & Georgios Aivaliotis, 2019. "Dynamic Dependence Modeling in financial time series," Papers 1908.05130, arXiv.org.
    11. Paulusch, Joachim & Schlütter, Sebastian, 2022. "Sensitivity-implied tail-correlation matrices," Journal of Banking & Finance, Elsevier, vol. 134(C).
    12. Charfeddine, Lanouar & Benlagha, Noureddine & Maouchi, Youcef, 2020. "Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors," Economic Modelling, Elsevier, vol. 85(C), pages 198-217.
    13. Buccioli, Alice & Kokholm, Thomas & Nicolosi, Marco, 2019. "Expected shortfall and portfolio management in contagious markets," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 100-115.
    14. Marfatia, Hardik A., 2017. "A fresh look at integration of risks in the international stock markets: A wavelet approach," Review of Financial Economics, Elsevier, vol. 34(C), pages 33-49.
    15. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    16. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    17. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    18. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    19. Dominique Guegan & Giovanni de Luca & Giorgia Rivieccio, 2017. "Three-stage estimation method for non-linear multiple time-series," Post-Print halshs-01439860, HAL.
    20. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:369-376:n:21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.