IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v3y2015i1p16n1.html
   My bibliography  Save this article

Cost-efficiency in multivariate Lévy models

Author

Listed:
  • Rüschendorf Ludger

    (Department of Mathematical Stochastics, University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany)

  • Wolf Viktor

    (Department of Mathematical Stochastics, University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany)

Abstract

In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient strategies in multivariate exponential Lévy models where the pricing is based on the multivariate Esscher martingale measure. This multivariate framework allows to deal with dependent price processes as arising in typical applications. Dependence of the components of the Lévy Process implies an influence even on the pricing of efficient versions of univariate payoffs.We state various relevant existence and uniqueness results for the Esscher parameter and determine cost efficient strategies in particular in the case of price processes driven by multivariate NIG- and VG-processes. From a monotonicity characterization of efficient payoffs we obtain that basket options are generally inefficient in Lévy markets when pricing is based on the Esscher measure.We determine efficient versions of the basket options in real market data and show that the proposed cost efficient strategies are also feasible from a numerical viewpoint. As a result we find that a considerable efficiency loss may arise when using the inefficient payoffs.

Suggested Citation

  • Rüschendorf Ludger & Wolf Viktor, 2015. "Cost-efficiency in multivariate Lévy models," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-16, April.
  • Handle: RePEc:vrs:demode:v:3:y:2015:i:1:p:16:n:1
    DOI: 10.1515/demo-2015-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2015-0001
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2015-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
    2. Dybvig, Philip H, 1988. "Distributional Analysis of Portfolio Choice," The Journal of Business, University of Chicago Press, vol. 61(3), pages 369-393, July.
    3. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    4. Ernst Eberlein & Antonis Papapantoleon & Albert N. Shiryaev, 2008. "Esscher transform and the duality principle for multidimensional semimartingales," Papers 0809.0301, arXiv.org, revised Nov 2009.
    5. Elisa Luciano & Patrizia Semeraro, 2010. "A Generalized Normal Mean-Variance Mixture For Return Processes In Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 415-440.
    6. Philip H. Dybvig, 1988. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 67-88.
    7. Jouini, Elyes & Kallal, Hedi, 2001. "Efficient Trading Strategies in the Presence of Market Frictions," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 343-369.
    8. Steven Vanduffel & Ales Ahcan & Luc Henrard & Mateusz Maj, 2012. "An Explicit Option-Based Strategy That Outperforms Dollar Cost Averaging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-19.
    9. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    10. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    11. Steven Vanduffel & Andrew Chernih & Matheusz Maj & Wim Schoutens, 2009. "A Note on the Suboptimality of Path-Dependent Pay-Offs in Levy Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(4), pages 315-330.
    12. repec:dau:papers:123456789/4721 is not listed on IDEAS
    13. Carole Bernard & Phelim P. Boyle & Steven Vanduffel, 2014. "Explicit Representation of Cost-Efficient Strategies," Finance, Presses universitaires de Grenoble, vol. 35(2), pages 5-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fajardo, José & Corcuera, José Manuel & Menouken Pamen, Olivier, 2016. "On the optimal investment," MPRA Paper 71901, University Library of Munich, Germany.
    2. Bernard, Carole & Chen, Jit Seng & Vanduffel, Steven, 2015. "Rationalizing investors’ choices," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 10-23.
    3. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    4. Carole Bernard & Junsen Tang, 2016. "Simplified Hedge For Path-Dependent Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-32, November.
    5. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    6. Alev{s} v{C}ern'y & Johannes Ruf, 2020. "Simplified stochastic calculus via semimartingale representations," Papers 2006.11914, arXiv.org, revised Jan 2022.
    7. Araujo, Aloisio & Chateauneuf, Alain & Faro, José Heleno, 2018. "Financial market structures revealed by pricing rules: Efficient complete markets are prevalent," Journal of Economic Theory, Elsevier, vol. 173(C), pages 257-288.
    8. Carole Bernard & Steven Vanduffel & Jiang Ye, 2018. "Optimal Portfolio Under State-Dependent Expected Utility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-22, May.
    9. Bizid, Abdelhamid & Jouini, Elyès, 2005. "Equilibrium Pricing in Incomplete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(4), pages 833-848, December.
    10. Bernard, Carole & Vanduffel, Steven & Ye, Jiang, 2019. "A new efficiency test for ranking investments: Application to hedge fund performance," Economics Letters, Elsevier, vol. 181(C), pages 203-207.
    11. Bertrand, Philippe & Prigent, Jean-luc, 2019. "On the optimality of path-dependent structured funds: The cost of standardization," European Journal of Operational Research, Elsevier, vol. 277(1), pages 333-350.
    12. Černý, Aleš & Ruf, Johannes, 2023. "Simplified calculus for semimartingales: Multiplicative compensators and changes of measure," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 572-602.
    13. repec:hal:wpaper:halshs-00664074 is not listed on IDEAS
    14. Bernard, C. & De Gennaro Aquino, L. & Vanduffel, S., 2023. "Optimal multivariate financial decision making," European Journal of Operational Research, Elsevier, vol. 307(1), pages 468-483.
    15. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    16. Beare, Brendan K., 2011. "Measure preserving derivatives and the pricing kernel puzzle," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 689-697.
    17. Borglin, Anders & Flåm, Sjur, 2007. "Rationalizing Constrained Contingent Claims," Working Papers 2007:12, Lund University, Department of Economics.
    18. Martin Wallmeier, 2011. "Beyond payoff diagrams: how to present risk and return characteristics of structured products," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 313-338, September.
    19. Mauricio Elizalde & Stephan Sturm, 2024. "Intertemporal Cost-efficient Consumption," Papers 2405.16336, arXiv.org.
    20. Marc Rieger, 2011. "Co-monotonicity of optimal investments and the design of structured financial products," Finance and Stochastics, Springer, vol. 15(1), pages 27-55, January.
    21. Bernard, Carole & Vanduffel, Steven & Ye, Jiang, 2019. "Optimal strategies under Omega ratio," European Journal of Operational Research, Elsevier, vol. 275(2), pages 755-767.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:3:y:2015:i:1:p:16:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.