IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v2y2014i1p21n1001.html
   My bibliography  Save this article

Quantifying the impact of different copulas in a generalized CreditRisk+ framework An empirical study

Author

Listed:
  • Jakob Kevin

    (Department of Economics, University of Augsburg)

  • Fischer Matthias

    (Department of Statistics and Econometrics, University of Nuremberg)

Abstract

Without any doubt, credit risk is one of the most important risk types in the classical banking industry. Consequently, banks are required by supervisory audits to allocate economic capital to cover unexpected future credit losses. Typically, the amount of economical capital is determined with a credit portfolio model, e.g. using the popular CreditRisk+ framework (1997) or one of its recent generalizations (e.g. [8] or [15]). Relying on specific distributional assumptions, the credit loss distribution of the CreditRisk+ class can be determined analytically and in real time. With respect to the current regulatory requirements (see, e.g. [4, p. 9-16] or [2]), banks are also required to quantify how sensitive their models (and the resulting risk figures) are if fundamental assumptions are modified. Against this background, we focus on the impact of different dependence structures (between the counterparties of the bank’s portfolio) within a (generalized) CreditRisk+ framework which can be represented in terms of copulas. Concretely, we present some results on the unknown (implicit) copula of generalized CreditRisk+ models and quantify the effect of the choice of the copula (between economic sectors) on the risk figures for a hypothetical loan portfolio and a variety of parametric copulas.

Suggested Citation

  • Jakob Kevin & Fischer Matthias, 2014. "Quantifying the impact of different copulas in a generalized CreditRisk+ framework An empirical study," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-21.
  • Handle: RePEc:vrs:demode:v:2:y:2014:i:1:p:21:n:1001
    DOI: 10.2478/demo-2014-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/demo-2014-0001
    Download Restriction: no

    File URL: https://libkey.io/10.2478/demo-2014-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    2. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2009. "Properties of hierarchical Archimedean copulas," SFB 649 Discussion Papers 2009-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Hering, Christian & Hofert, Marius & Mai, Jan-Frederik & Scherer, Matthias, 2010. "Constructing hierarchical Archimedean copulas with Lévy subordinators," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1428-1433, July.
    6. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okhrin, Ostap & Ristig, Alexander, 2012. "Hierarchical Archimedean copulae: The HAC package," SFB 649 Discussion Papers 2012-036, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    3. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    4. Osama Ahmed & Teresa Serra, 2015. "Economic analysis of the introduction of agricultural revenue insurance contracts in Spain using statistical copulas," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 69-79, January.
    5. Xu, Wei & Okhrin, Ostap & Odening, Martin & Cao, Ji, 2010. "Systemic weather risk and crop insurance: The case of China," SFB 649 Discussion Papers 2010-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    7. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    8. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    9. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    10. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    11. Ebnother, Silvan & Vanini, Paolo, 2007. "Credit portfolios: What defines risk horizons and risk measurement?," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3663-3679, December.
    12. Strausz, Roland, 2009. "The political economy of regulatory risk," SFB 649 Discussion Papers 2009-040, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Kleinow, Jacob & Moreira, Fernando, 2016. "Systemic risk among European banks: A copula approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 27-42.
    14. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    15. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    16. Peter Zweifel, 2021. "Solvency Regulation—An Assessment of Basel III for Banks and of Planned Solvency III for Insurers," JRFM, MDPI, vol. 14(6), pages 1-22, June.
    17. Chatterjee, Somnath & Jobst, Andreas, 2019. "Market-implied systemic risk and shadow capital adequacy," Bank of England working papers 823, Bank of England.
    18. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    19. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Choroś, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2009. "CDO and HAC," SFB 649 Discussion Papers 2009-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:2:y:2014:i:1:p:21:n:1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.