IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v18y2018i1p3-21.html
   My bibliography  Save this article

Power and sample-size analysis for the Royston–Parmar combined test in clinical trials with a time-to-event outcome

Author

Listed:
  • Patrick Royston

    (University College London)

Abstract

Randomized controlled trials with a time-to-event outcome are usually designed and analyzed assuming proportional hazards (PH) of the treatment effect. The sample-size calculation is based on a log-rank test or the nearly identical Cox test, henceforth called the Cox/log-rank test. Nonproportional hazards (non-PH) has become more common in trials and is recognized as a potential threat to interpreting the trial treatment effect and the power of the log-rank test—hence to the success of the trial. To address the issue, in 2016, Royston and Parmar (BMC Medical Research Methodology 16: 16) proposed a “combined test” of the global null hypothesis of identical survival curves in each trial arm. The Cox/log- rank test is combined with a new test derived from the maximal standardized difference in restricted mean survival time (RMST) between the trial arms. The test statistic is based on evaluations of the between-arm difference in RMST over several preselected time points. The combined test involves the minimum p-value across the Cox/log-rank and RMST-based tests, appropriately standardized to have the correct distribution under the global null hypothesis. In this article, I introduce a new command, power ct, that uses simulation to implement power and sample-size calculations for the combined test. power ct supports designs with PH or non-PH of the treatment effect. I provide examples in which the power of the combined test is compared with that of the Cox/log-rank test under PH and non-PH scenarios. I conclude by offering guidance for sample-size calculations in time-to-event trials to allow for possible non-PH.

Suggested Citation

  • Patrick Royston, 2018. "Power and sample-size analysis for the Royston–Parmar combined test in clinical trials with a time-to-event outcome," Stata Journal, StataCorp LP, vol. 18(1), pages 3-21, March.
  • Handle: RePEc:tsj:stataj:v:18:y:2018:i:1:p:3-21
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj18-1/st0510/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0510
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:18:y:2018:i:1:p:3-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.