IDEAS home Printed from https://ideas.repec.org/a/taf/uteexx/v58y2013i4p231-264.html
   My bibliography  Save this article

Small Modular Infrastructure

Author

Listed:
  • Eric Dahlgren
  • Caner Göçmen
  • Klaus Lackner
  • Garrett van Ryzin

Abstract

In this article we argue that advances made in automation, communication, and manufacturing portend a dramatic reversal of the “bigger is better” approach to cost reductions prevalent in many basic infrastructure industries; for example, transportation, electric power generation, and raw material processing. We show that the traditional reductions in capital costs achieved by scaling up in size are generally matched by learning effects in the mass production process when scaling up in numbers instead. In addition, using the U.S. electricity generation sector as a case study, we argue that the primary operating cost advantage of large unit scale is reduced labor, which can be eliminated by employing low-cost automation technologies. Finally, we argue that locational, operational, and financial flexibilities that accompany smaller unit scale can reduce investment and operating costs even further. All of these factors combined imply that with current technology, economies of numbers may well dominate economies of unit scale. Yet realizing the full potential of small unit scale will require technologists and business leaders to develop a new ability to “think small.”

Suggested Citation

  • Eric Dahlgren & Caner Göçmen & Klaus Lackner & Garrett van Ryzin, 2013. "Small Modular Infrastructure," The Engineering Economist, Taylor & Francis Journals, vol. 58(4), pages 231-264.
  • Handle: RePEc:taf:uteexx:v:58:y:2013:i:4:p:231-264
    DOI: 10.1080/0013791X.2013.825038
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0013791X.2013.825038
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0013791X.2013.825038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahlgren, Eric & Leung, Tim, 2015. "An optimal multiple stopping approach to infrastructure investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 251-267.
    2. Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
    3. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    4. Jonas Heiberg & Bernhard Truffer, 2021. "Overcoming the harmony fallacy: How values shape the course of innovation systems," GEIST - Geography of Innovation and Sustainability Transitions 2021(03), GEIST Working Paper Series.
    5. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    6. Katrin Pakizer & Eva Lieberherr, 2018. "Alternative governance arrangements for modular water infrastructure: An exploratory review," Competition and Regulation in Network Industries, , vol. 19(1-2), pages 53-68, March.
    7. Eggimann, Sven & Truffer, Bernhard & Feldmann, Ulrike & Maurer, Max, 2018. "Screening European market potentials for small modular wastewater treatment systems – an inroad to sustainability transitions in urban water management?," Land Use Policy, Elsevier, vol. 78(C), pages 711-725.
    8. Black, Geoffrey & Taylor Black, Meredith A. & Solan, David & Shropshire, David, 2015. "Carbon free energy development and the role of small modular reactors: A review and decision framework for deployment in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 83-94.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uteexx:v:58:y:2013:i:4:p:231-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTEE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.