IDEAS home Printed from https://ideas.repec.org/a/taf/usppxx/v7y2020i1p30-38.html
   My bibliography  Save this article

Quantifying Gerrymandering in North Carolina

Author

Listed:
  • Gregory Herschlag
  • Han Sung Kang
  • Justin Luo
  • Christy Vaughn Graves
  • Sachet Bangia
  • Robert Ravier
  • Jonathan C. Mattingly

Abstract

By comparing a specific redistricting plan to an ensemble of plans, we evaluate whether the plan translates individual votes to election outcomes in an unbiased fashion. Explicitly, we evaluate if a given redistricting plan exhibits extreme statistical properties compared to an ensemble of nonpartisan plans satisfying all legal criteria. Thus, we capture how unbiased redistricting plans interpret individual votes via a state’s geo-political landscape. We generate the ensemble of plans through a Markov chain Monte Carlo algorithm coupled with simulated annealing based on a reference distribution that does not include partisan criteria. Using the ensemble and historical voting data, we create a null hypothesis for various election results, free from partisanship, accounting for the state’s geo-politics. We showcase our methods on two recent congressional districting plans of NC, along with a plan drawn by a bipartisan panel of retired judges. We find the enacted plans are extreme outliers whereas the bipartisan judges’ plan does not give rise to extreme partisan outcomes. Equally important, we illuminate anomalous structures in the plans of interest by developing graphical representations which help identify and understand instances of cracking and packing associated with gerrymandering. These methods were successfully used in recent court cases. Supplementary materials for this article are available online.

Suggested Citation

  • Gregory Herschlag & Han Sung Kang & Justin Luo & Christy Vaughn Graves & Sachet Bangia & Robert Ravier & Jonathan C. Mattingly, 2020. "Quantifying Gerrymandering in North Carolina," Statistics and Public Policy, Taylor & Francis Journals, vol. 7(1), pages 30-38, January.
  • Handle: RePEc:taf:usppxx:v:7:y:2020:i:1:p:30-38
    DOI: 10.1080/2330443X.2020.1796400
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/2330443X.2020.1796400
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/2330443X.2020.1796400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Cannon & Ari Goldbloom-Helzner & Varun Gupta & JN Matthews & Bhushan Suwal, 2023. "Voting Rights, Markov Chains, and Optimization by Short Bursts," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-38, March.
    2. Jeanne Clelland & Haley Colgate & Daryl DeFord & Beth Malmskog & Flavia Sancier-Barbosa, 2022. "Colorado in context: Congressional redistricting and competing fairness criteria in Colorado," Journal of Computational Social Science, Springer, vol. 5(1), pages 189-226, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:usppxx:v:7:y:2020:i:1:p:30-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uspp .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.