Author
Listed:
- Hieu Bui
- Sandra Ekşioğlu
- Rubén Proano
- Sarah Nurre Pinkley
Abstract
Reluctance or refusal to get vaccinated, commonly known as Vaccine Hesitancy (VH), poses a significant challenge to COVID-19 vaccination campaigns. Understanding the factors contributing to VH is essential for shaping effective public health strategies. This study proposes a novel framework for combining machine learning with publicly available data to generate a proxy metric that evaluates the dynamics of VH faster than the currently used survey methods. The metric is input to descriptive classification models that analyze a wide array of data, aiming to identify key factors associated with VH at the county level in the U.S. during the COVID-19 pandemic (i.e., January to October 2021). Both static and dynamic factors are considered. We use a Random Forest classifier that identifies political affiliation and Google search trends as the most significant factors influencing VH behavior. The model categorizes U.S. counties into five distinct clusters based on VH behavior. Cluster 1, with low VH, consists mainly of Democratic-leaning residents who, have the longest life expectancy, have a college degree, have the highest income per capita, and live in metropolitan areas. Cluster 5, with high VH, is predominantly Republican-leaning individuals in non-metropolitan areas. Individuals in Cluster 1 is more responsive to vaccination policies.
Suggested Citation
Hieu Bui & Sandra Ekşioğlu & Rubén Proano & Sarah Nurre Pinkley, 2025.
"An analysis of COVID-19 vaccine hesitancy in the U.S,"
IISE Transactions, Taylor & Francis Journals, vol. 57(3), pages 246-260, March.
Handle:
RePEc:taf:uiiexx:v:57:y:2025:i:3:p:246-260
DOI: 10.1080/24725854.2024.2301966
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:57:y:2025:i:3:p:246-260. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.