Author
Listed:
- Hao Wu
- Qiao Liang
- Kaibo Wang
Abstract
As data with network structures are widely seen in diverse applications, the modeling and monitoring of network data have drawn considerable attention in recent years. When individuals in a network have multiple types of interactions, a multilayer network model should be considered to better characterize its behavior. Most existing network models have concentrated on characterizing the topological structure among individuals, and important attributes of individuals are largely disregarded in existing works. In this article, first, we propose a unified static Network Generative Model (static-NGM), which incorporates individual attributes in network topology modeling. The proposed model can be utilized for a general multilayer network with weighted and directed edges. A variational expectation maximization algorithm is developed to estimate model parameters. Second, to characterize the time-dependent property of a network sequence and perform network monitoring, we extend the static-NGM model to a sequential version, namely, the sequential-NGM model, with the Markov assumption. Last, a sequential-NGM chart is developed to detect shifts and identify root causes of shifts in a network sequence. Extensive simulation experiments show that considering attributes improves the parameter estimation accuracy and that the proposed monitoring method also outperforms the three competitive approaches, static-NGM chart, score test-based chart (ST chart) and Bayes factor-based chart (BF chart), in both shift detection and root cause diagnosis. We also perform a case study with Enron E-mail data; the results further validate the proposed method.
Suggested Citation
Hao Wu & Qiao Liang & Kaibo Wang, 2024.
"Modeling and monitoring multilayer attributed weighted directed networks via a generative model,"
IISE Transactions, Taylor & Francis Journals, vol. 56(8), pages 902-914, August.
Handle:
RePEc:taf:uiiexx:v:56:y:2024:i:8:p:902-914
DOI: 10.1080/24725854.2023.2256369
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:56:y:2024:i:8:p:902-914. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.