IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v56y2024i8p793-810.html
   My bibliography  Save this article

Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems

Author

Listed:
  • Hanxiao Zhang
  • Yan-Fu Li
  • Min Xie
  • Chen Zhang

Abstract

The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social safety. The existing works generally optimize these two problems sequentially and assume that the degradation process of components is precisely known. However, sequential optimization often results in significant losses due to redundancies, and such a presumption usually cannot be guaranteed in practice, due to limited historical data or a lack of expert knowledge, referred to as epistemic uncertainty. To fill this gap, in this article, we consider an integrated optimization of system design and maintenance scheduling for multi-state high-consequence systems in which the component’s degradation is known with limited distributional information. To address this issue, we utilize the framework of distributionally robust optimization to provide a risk-averse decision to decision-makers even under the worst realizations of random parameters, and develop a two-stage integer distributionally robust model with moment-based ambiguity set to determine the system design and maintenance scheduling simultaneously. The proposed model can be converted to a tractable approximation as an integer linear stochastic programming problem. In order to solve large-scale problems, we develop a sample-based adaptive large neighborhood search algorithm to find the optimal system designs. In the numerical experiments, we present a case study on feedwater heating systems in nuclear power plants and demonstrate that an integrated optimization consideration creates significant benefits in profitability. We also present the out-of-sample performance of the distributionally robust design to avoid extreme risk.

Suggested Citation

  • Hanxiao Zhang & Yan-Fu Li & Min Xie & Chen Zhang, 2024. "Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems," IISE Transactions, Taylor & Francis Journals, vol. 56(8), pages 793-810, August.
  • Handle: RePEc:taf:uiiexx:v:56:y:2024:i:8:p:793-810
    DOI: 10.1080/24725854.2023.2225097
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2023.2225097
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2023.2225097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:56:y:2024:i:8:p:793-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.