Author
Listed:
- Weizhi Lin
- Cesar Ruiz
- Matan Aroosh
- Hadar Ben-Yoav
- Qiang Huang
Abstract
Multielectrode electrochemical biosensors promise on-the-spot inspection of target compounds in biofluids, reducing costs in personalized healthcare. However, sensor sensitivity may decrease after each use due to biofouling, where chemical attachments on sensor electrodes curtail sensing signals. Current biofouling characterization techniques rely on time-consuming offline tests and analysis, making them impractical for on-the-spot signal correction. Alternatively, we propose to statistically model and correct the biofouling-induced signal changes. However, in addition to biofouling, the signals are influenced by multiple sources of variation, each with different levels of impact. To effectively characterize and separate biofouling effects from the major sources of variability, we establish a multiresolution functional mixed-effect model based on domain knowledge. A biosensing signal is first decomposed into a smooth trend and local peaks. The smooth trend models the effects of population-level biofluid composition, as well as patient and electrode effects to isolate variability sources. Changes in local peak location and amplitude indicate biofouling. These local peaks are modeled using a sparse subset of high-order functional terms. By modeling the changes of those high-order terms, we can characterize and predict the biofouling between consecutive measurements. We propose a sequential parameter estimation procedure that ensures model identifiability. A nonparametric regression model is developed for biofouling prediction. The proposed strategy is validated through simulation and real case studies, effectively correcting biofouling-affected signals from new patients.
Suggested Citation
Weizhi Lin & Cesar Ruiz & Matan Aroosh & Hadar Ben-Yoav & Qiang Huang, 2024.
"Multiresolution functional characterization and correction of biofouling for improved biosensing efficacy,"
IISE Transactions, Taylor & Francis Journals, vol. 56(6), pages 611-623, June.
Handle:
RePEc:taf:uiiexx:v:56:y:2024:i:6:p:611-623
DOI: 10.1080/24725854.2023.2222162
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:56:y:2024:i:6:p:611-623. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.