Author
Listed:
- Xin Zan
- Jaclyn Hall
- Tom Hladish
- Xiaochen Xian
Abstract
Since 2002, with the SARS outbreak, infectious diseases, including the ongoing COVID-19 pandemic, have continued to be a major global public health threat. It is critical to develop effective data science methods to quickly detect disease outbreaks and contain their rapid globalized spread. However, in practice, limited testing availability, and thus insufficient testing data poses significant challenges in effective analysis and real-time monitoring of infectious diseases, especially during early stages of a novel disease outbreak. To tackle these challenges, this article proposes adaptive testing resource allocation strategies integrated with a physics-informed model to dynamically allocate limited testing resources across different communities. The physics-informed model accounts for transmission dynamics and health disparities, enabling effective health risk assessment despite limited data. By integrating nonstationary Multi-Armed Bandit techniques that strike superior balance between exploring the communities with high uncertain risks and exploiting those with high risk levels, the proposed methodology facilitates test allocation to collect high-quality testing data for early outbreak detection. Theoretical analysis is carried out to evaluate the performance of the proposed allocation strategies, ensuring either sublinear or linear dynamic pseudo-regret under regularity assumptions. A comprehensive simulation study is conducted under three transmission scenarios to thoroughly evaluate the proposed methodology.
Suggested Citation
Xin Zan & Jaclyn Hall & Tom Hladish & Xiaochen Xian, 2024.
"Data-driven adaptive testing resource allocation strategies for real-time monitoring of infectious diseases,"
IISE Transactions, Taylor & Francis Journals, vol. 56(12), pages 1279-1293, December.
Handle:
RePEc:taf:uiiexx:v:56:y:2024:i:12:p:1279-1293
DOI: 10.1080/24725854.2023.2266488
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:56:y:2024:i:12:p:1279-1293. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.