Author
Listed:
- Zhaohui Geng
- Arman Sabbaghi
- Bopaya Bidanda
Abstract
Reverse Engineering (RE) has been widely used to extract geometric design information from a physical product for reproduction or redesign purposes. A scan of an object is often implemented to (re-)construct the computer-aided design model. However, this model is most likely an inaccurate representation of the original design, due to the existing uncertainties in each part and the scanning process. This randomness can result in shrinking the original tolerance region or even yielding asymmetric tolerance regions, which can call for unnecessarily high precision reproduction. In this article, we first propose an algorithm to generate the mean configuration based on the data clouds collected from several scans and multiple parts (if applicable). A Bayesian model with prior knowledge of production processes and scanners is specified to model the statistical properties of the mean configuration. Its marginal posterior outperforms single-scan models with lower variances, concentrating around the physical object or initial design. Furthermore, we propose a bi-objective optimization model to address RE process planning questions regarding the required number of scans and parts to achieve target accuracy requirements. Simulations and industrial case studies, including both unique freeform objects and mechanical parts, are conducted to illustrate and evaluate the performances of proposed methods.
Suggested Citation
Zhaohui Geng & Arman Sabbaghi & Bopaya Bidanda, 2023.
"Reconstructing original design: Process planning for reverse engineering,"
IISE Transactions, Taylor & Francis Journals, vol. 55(5), pages 509-522, May.
Handle:
RePEc:taf:uiiexx:v:55:y:2023:i:5:p:509-522
DOI: 10.1080/24725854.2022.2040761
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:55:y:2023:i:5:p:509-522. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.