IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v53y2021i11p1244-1265.html
   My bibliography  Save this article

Optimal sampling plan for an unreliable multistage production system subject to competing and propagating random shifts

Author

Listed:
  • Sinan Obaidat
  • Haitao Liao

Abstract

Sampling plans play an important role in monitoring production systems and reducing quality- and maintenance-related costs. Existing sampling plans usually focus on one assignable cause. However, multiple assignable causes may occur, especially for a multistage production system, and the resulting process shift may propagate downstream. This article addresses the problem of finding the optimal sampling plan for an unreliable multistage production system subject to competing and propagating random quality shifts. In particular, a serial production system with two unreliable machines that produce a product at a fixed production rate is studied. It is assumed that both machines are subject to random quality shifts with increased nonconforming rates and can suddenly fail with increasing failure rates. A sampling plan is implemented at the end of the production line to determine whether the system has shifted or not. If a process shift is detected, a necessary maintenance action will be initiated. The optimal sample size, sampling interval, and acceptance threshold are determined by minimizing the long-run cost rate subject to the constraints on average time to signal a true alarm, effective production rate, and system availability. A numerical example on an automatic shot blasting and painting system is provided to illustrate the application of the proposed sampling plan and the effects of key parameters and system constraints on the optimal sampling plan. Moreover, the proposed model shows better performance for various cases than an alternative model that ignores shift propagation.

Suggested Citation

  • Sinan Obaidat & Haitao Liao, 2021. "Optimal sampling plan for an unreliable multistage production system subject to competing and propagating random shifts," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1244-1265, August.
  • Handle: RePEc:taf:uiiexx:v:53:y:2021:i:11:p:1244-1265
    DOI: 10.1080/24725854.2020.1825880
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2020.1825880
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2020.1825880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Haohao & Zhang, Ji & Zio, Enrico & Zhao, Xufeng, 2023. "Opportunistic maintenance policies for multi-machine production systems with quality and availability improvement," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:53:y:2021:i:11:p:1244-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.