Author
Listed:
- Ali Yekkehkhany
- Ebrahim Arian
- Rakesh Nagi
- Ilan Shomorony
Abstract
In this article, a multi–armed bandit problem is studied in an explore–then–commit setting where the cost of pulling an arm in the experimentation (exploration) phase may not be negligible. Identifying the best arm after a pure experimentation phase to exploit it once or for a given finite number of times is the goal of the problem. Applications of this are prevalent in personalized health-care and financial investments where the frequency of exploitation is limited. In this setting, we observe that pulling the arm with the highest expected reward is not necessarily the most desirable objective for exploitation. Alternatively, we advocate the idea of risk aversion, where the objective is to compete against the arm with the best risk–return trade–off. Additionally, a trade–off between cost and regret should be considered in the case where pulling arms in the exploration phase incurs a cost. In the case that the exploration cost is not considered, we propose a class of hyper–parameter–free risk–averse algorithms, called OTE/FTE–MAB (One/Finite–Time Exploitation Multi–Armed Bandit), whose objectives are to select the arm that is most probable to reward the most in a single or finite–time exploitations. To analyze these algorithms, we define a new notion of finite–time exploitation regret for our setting of interest. We provide an upper bound of order ln (1∈r) for the minimum number of experiments that should be done to guarantee upper bound er for regret. As compared with existing risk–averse bandit algorithms, our algorithms do not rely on hyper–parameters, resulting in a more robust behavior in practice. In the case that pulling an arm in the exploration phase has a cost, we propose the c–OTE–MAB algorithm for two–armed bandits that addresses the cost–regret trade–off, corresponding to exploration–exploitation trade–off, by minimizing a linear combination of cost and regret that is called cost– regret function, using a hyper–parameter. This algorithm determines an estimation of the optimal number of explorations whose cost–regret value approaches the minimum value of the cost–regret function at the rate 1ne with an associated confidence level, where ne is the number of explorations of each arm.
Suggested Citation
Ali Yekkehkhany & Ebrahim Arian & Rakesh Nagi & Ilan Shomorony, 2021.
"A cost–based analysis for risk–averse explore–then–commit finite–time bandits,"
IISE Transactions, Taylor & Francis Journals, vol. 53(10), pages 1094-1108, October.
Handle:
RePEc:taf:uiiexx:v:53:y:2021:i:10:p:1094-1108
DOI: 10.1080/24725854.2021.1882014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:53:y:2021:i:10:p:1094-1108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.