IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v51y2019i7p792-805.html
   My bibliography  Save this article

Multi-fidelity sampling for efficient simulation-based decision making in manufacturing management

Author

Listed:
  • Jie Song
  • Yunzhe Qiu
  • Jie Xu
  • Feng Yang

Abstract

Today’s manufacturers operate in highly dynamic and uncertain market environments. Process-level disturbances present further challenges. Consequently, it is of strategic importance for a manufacturing company to develop robust manufacturing capabilities that can quickly adapt to varying customer demands in the presence of external and internal uncertainty and stochasticity. Discrete-event simulations have been used by manufacturing managers to conduct “look-ahead” analysis and optimize resource allocation and production plan. However, simulations of complex manufacturing systems are time-consuming. Therefore, there is a great need for a highly efficient procedure to allocate a limited number of simulations to improve a system’s performance. In this article, we propose a multi-fidelity sampling algorithm that greatly increases the efficiency of simulation-based robust manufacturing management by utilizing ordinal estimates obtained from a low-fidelity, but fast, approximate model. We show that the multi-fidelity optimal sampling policy minimizes the expected optimality gap of the selected solution, and thus optimally uses a limited simulation budget. We derive an upper bound for the multi-fidelity sampling policy and compare it with other sampling policies to illustrate the efficiency improvement. We demonstrate its computational efficiency improvement and validate the convergence results derived using both benchmark test functions and two robust manufacturing management case studies.

Suggested Citation

  • Jie Song & Yunzhe Qiu & Jie Xu & Feng Yang, 2019. "Multi-fidelity sampling for efficient simulation-based decision making in manufacturing management," IISE Transactions, Taylor & Francis Journals, vol. 51(7), pages 792-805, July.
  • Handle: RePEc:taf:uiiexx:v:51:y:2019:i:7:p:792-805
    DOI: 10.1080/24725854.2019.1576951
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1576951
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1576951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingxu Xu & Zeyu Zheng, 2023. "Gradient-Based Simulation Optimization Algorithms via Multi-Resolution System Approximations," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 633-651, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:7:p:792-805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.