IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v51y2019i6p577-588.html
   My bibliography  Save this article

A bi-criteria multiple-choice secretary problem

Author

Listed:
  • Ge Yu
  • Sheldon Howard Jacobson
  • Negar Kiyavash

Abstract

This article studies a Bi-criteria Multiple-choice Secretary Problem (BMSP) with full information. A sequence of candidates arrive one at a time, with a two-dimensional attribute vector revealed upon arrival. A decision maker needs to select a total number of η candidates to fill η job openings, based on the attribute vectors of candidates. The objective of the decision maker is to maximize the expected sum of attribute values of selected candidates for both dimensions of the attribute vector. An approach for generating Pareto-optimal policies for BMSP is proposed using the weighted sum method. Moreover, closed-form expressions for values of both objective functions under Pareto-optimal policies for BMSP are provided to help a decision maker in the policy planning stage. These analysis techniques can be applied directly to solve the more general class of multi-criteria multiple-choice Secretary Problems, provided the objective functions are in the form of accumulating a product-form reward for each selected candidate.

Suggested Citation

  • Ge Yu & Sheldon Howard Jacobson & Negar Kiyavash, 2019. "A bi-criteria multiple-choice secretary problem," IISE Transactions, Taylor & Francis Journals, vol. 51(6), pages 577-588, June.
  • Handle: RePEc:taf:uiiexx:v:51:y:2019:i:6:p:577-588
    DOI: 10.1080/24725854.2018.1516054
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2018.1516054
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2018.1516054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meghan Shanks & Ge Yu & Sheldon H. Jacobson, 2023. "Approximation algorithms for stochastic online matching with reusable resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 43-56, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:6:p:577-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.