Author
Listed:
- Daniel Tonke
- Martin Grunow
- Renzo Akkerman
Abstract
Technological developments have propelled the deployment of robots in many applications, which has led to the trend to integrate an increasing number of uncertain processes into robotic and automated equipment. We contribute to this domain by considering the scheduling of a dual-gripper robotic cell. For systems with one potential bottleneck, we determine conditions under which the widely used swap sequence does not guarantee optimality or even feasibility and prove that optimal schedules can be derived under certain conditions when building on two types of slack we introduce. With the addition of a third type of slack and the concept of fixed partial schedules, we develop an offline-online scheduling approach that, in contrast with previous work, is able to deal with uncertainty in all process steps and robot handling tasks, even under pick-up constraints. The approach can deal with single- or multiple-bottleneck systems, and is the first approach that is not restricted to a single predefined sequence such as the swap sequence. Our approach is well suited for real-world applications, since it generates cyclic schedules and allows integration into commonly-used frameworks for robotic-cell scheduling and control.We demonstrate the applicability of our approach to cluster tools in semiconductor manufacturing, showing that our approach generates feasible results for all tested levels of uncertainty and optimal or near-optimal results for low levels of uncertainty. With additional symmetry-breaking constraints, the model can be efficiently applied to industrial-scale test instances. We show that reducing uncertainty to below 10% of the processing time would yield significantly improved cycle lengths and throughput. We also demonstrate that the widely used swap sequence only finds solutions for less than 1% of the instances when strict pick-up constraints are enforced and processing times are heterogeneous. As our approach finds feasible solutions to all of these instances, it enables the application of robotic cells to a significantly broader application environment.
Suggested Citation
Daniel Tonke & Martin Grunow & Renzo Akkerman, 2019.
"Robotic-cell scheduling with pick-up constraints and uncertain processing times,"
IISE Transactions, Taylor & Francis Journals, vol. 51(11), pages 1217-1235, November.
Handle:
RePEc:taf:uiiexx:v:51:y:2019:i:11:p:1217-1235
DOI: 10.1080/24725854.2018.1555727
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:11:p:1217-1235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.