IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v50y2018i6p499-511.html
   My bibliography  Save this article

Mitigating a pyro-terror attack using fuel treatment

Author

Listed:
  • Eghbal Rashidi
  • Hugh Richard Medal
  • Aaron Hoskins

Abstract

We study a security problem in which an adversary seeks to attack a landscape by setting a wildfire in a strategic location, whereas wildfire managers wish to mitigate the damage of the attack by implementing a fuel treatment in the landscape. We model the problem as a min–max Stackelberg game with the goal of identifying an optimal fuel treatment plan that minimizes the impact of a pyro-terror attack. As the adversary's problem is discrete, we use a decomposition algorithm suitable for integer bi-level programs. We test our model on three test landscape cases located in the Western United States. The results indicate that fuel treatment can effectively mitigate the effects of an attack: implementing fuel treatment on 2, 5, and 10% of the landscape, on average, reduces the damage caused by a pyro-terror attack by 14, 27, and 43%, respectively. The resulting fuel treatment plan is also effective in mitigating natural wildfires with randomly placed ignition points. The pyro-terrorism mitigation problem studied in this article is equivalent to the b-interdiction-covering problem where the intermediate nodes are subject to interdiction. It can also be interpreted as the problem of identifying the b-most-vital nodes in a one-to-all shortest path problem.

Suggested Citation

  • Eghbal Rashidi & Hugh Richard Medal & Aaron Hoskins, 2018. "Mitigating a pyro-terror attack using fuel treatment," IISE Transactions, Taylor & Francis Journals, vol. 50(6), pages 499-511, June.
  • Handle: RePEc:taf:uiiexx:v:50:y:2018:i:6:p:499-511
    DOI: 10.1080/24725854.2017.1415490
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2017.1415490
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2017.1415490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karwowski, Jan & Mańdziuk, Jacek, 2019. "A Monte Carlo Tree Search approach to finding efficient patrolling schemes on graphs," European Journal of Operational Research, Elsevier, vol. 277(1), pages 255-268.
    2. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:50:y:2018:i:6:p:499-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.