IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v49y2017i5p518-531.html
   My bibliography  Save this article

State space modeling of autocorrelated multivariate Poisson counts

Author

Listed:
  • Chen Zhang
  • Nan Chen
  • Zhiguo Li

Abstract

Although many applications involve autocorrelated multivariate counts, there is a scarcity of research on their statistical modeling. To fill this research gap, this article proposes a state space model to describe autocorrelated multivariate counts. The model builds upon the multivariate log-normal mixture Poisson distribution and allows for serial correlations by considering the Poisson mean vector as a latent process driven by a nonlinear autoregressive model. In this way, the model allows for flexible cross-correlation and autocorrelation structures of count data and can also capture overdispersion. The Monte Carlo Expectation Maximization algorithm, together with particle filtering and smoothing methods, provides satisfactory estimators for the model parameters and the latent process variables. Numerical studies show that, compared with other state-of-the-art models, the proposed model has superiority and more generality with respect to describing count data generated from different mechanisms of the process of counts. Finally, we use this model to analyze counts of different types of damage collected from a power utility system as a case study. Supplementary materials are available for this article. Go to the publisher’s online edition of IISE Transactions for additional tables and figures.

Suggested Citation

  • Chen Zhang & Nan Chen & Zhiguo Li, 2017. "State space modeling of autocorrelated multivariate Poisson counts," IISE Transactions, Taylor & Francis Journals, vol. 49(5), pages 518-531, May.
  • Handle: RePEc:taf:uiiexx:v:49:y:2017:i:5:p:518-531
    DOI: 10.1080/24725854.2016.1251665
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2016.1251665
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2016.1251665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:49:y:2017:i:5:p:518-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.